Freshwater Science Webinar: Investigating Hypoxia Dynamics in Lake Erie
Harmful algal blooms and hypoxic zones, or areas with low oxygen, are leading environmental problems in Lake Erie, adversely affecting water quality and fish habitat. Despite their importance, the characteristics and long-term variability of the hypoxic zones in the lake remain poorly understood.
Dr. Fasong Yuan of Cleveland State University is leading multifaceted research to shed light on the dynamics and long-term changes in the lake’s hypoxic zones to help inform policy makers, stakeholders, and resource managers. Researchers are gathering in-situ sensor timeseries data to characterize both nearshore and offshore hypoxic systems, employing stable isotopes of dissolved inorganic carbon to offer a quantitative understanding of oxygen-consuming organic matter in hypoxic waters, and analyzing surface sediments and sediment cores to yield insights into long-term evolution of hypoxia dynamics across the transition zone between hypoxia and normoxia, or areas with normal oxygen level, in central Lake Erie off the coast of Cleveland.