
1 

 

 

 

Evaluating AHDriFT Camera Traps and Traditional Survey Methods for Eastern 

Massasauga Rattlesnake (Sistrurus catenatus) Presence-Absence 

 

 

Thesis 

 

Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science 

in the Graduate School of The Ohio State University 

 

By 

Evan Douglas Amber 

Graduate Program in Environment and Natural Resources 

 

The Ohio State University 

2021 

 

 

Thesis Committee 

William E. Peterman, Advisor 

Christopher M. Tonra 

Stanley Gehrt 

  

 



2 

 

 

 

 

 

 

 

 

 

Copyrighted by 

Evan Douglas Amber 

2021 

 

 

 



ii 

 

Abstract 

The Eastern Massasauga Rattlesnake (Sistrurus catenatus) is Federally threatened 

and Ohio endangered. Accepted Ohio survey protocols includes visual encounter surveys 

(VES) and artificial cover (corrugated tin sheets) surveys. Although effective, these 

traditional methods require intensive field effort (~25 weekly visits). The Adapted-Hunt 

Drift Fence Technique (AHDriFT) is a new low-effort camera trap and drift method for 

ectotherms and small mammals. However, the method has not been applied for 

Massasauga or in their habitats, or even evaluated beyond proof-of-concept.  

The objectives of this study were to: (1) assess AHDriFT as a wildlife survey tool; 

(2) compare AHDriFT efficacy for Massasauga presence-absence surveys to VES and tin 

surveys in terms of detection rates, detection probability, and cost-efficiency; (3) 

determine optimal AHDriFT deployment for Massasauga in terms of camera trap timing 

and length, array spatial placement, and weather influence; and (4) provide preliminary 

recommendations for a Massasauga survey protocol using AHDriFT. 

I deployed 15 Y-shaped AHDriFT arrays in fields with known Massasauga 

populations from March – October 2019 and 2020. In 2019, I compared arrays to prior 

VES and tin surveys, and assessed between-field detection covariates. In 2020, I 

evaluated concurrent surveys and assessed within-field detection covariates. 
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Equipment for each array cost approximately US$1,570. Construction and 

deployment of each array took about three hours, with field servicing requiring 15 

minutes per array. Arrays proved durable under wind, ice, snow, flooding, and heat. 

Processing two-weeks of images of 45 cameras averaged 13 person-hours. In 2019, 

arrays obtained 9,018 detections of 41 vertebrate species comprised of 5 amphibians, 13 

reptiles (11 snakes), 16 mammals, and 7 birds. Arrays cumulatively detected all 

amphibians and 92% of expected snakes and small mammals.  

Arrays obtained a total of 206 Massasauga detections, 2 – 4 times that of 

traditional methods. In 2019, arrays detected 0.48 snakes/person-hour, surpassing prior 

VES (0.11) and tin surveys (0.28). In 2020, arrays exceeded tin catch-per-person-hour by 

at least 2.6 – 6 times. Weekly array detection probability equated to maximum tin 

detection probability per survey (0.5) using only 1 array/~15 ha. Additional arrays 

increased weekly detection probability to 0.6 – 0.9. However, arrays have lower weekly 

detection probability (0.1 – 0.4) in small population sites. Such sites therefore required 

longer camera trapping timeframes and higher array densities to achieve low error rates.  

Arrays were most effective from June – October, requiring as few as five field 

visits for 16 weeks of camera trapping. Optimal array placement is in dense vegetation 

away from predator perch trees. After equipment purchases, AHDriFT was more cost-

effective than tin. Overall, AHDriFT was an effective snake and small mammal survey 

and inventory tool. The method also demonstrates high promise as a more effective 

Massasauga survey tool than traditional surveys. Still, AHDriFT needs to be tested in 

Massasauga sites more representative of their typically small population sizes in Ohio. 
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Chapter 1. Evaluation of the AHDriFT Camera Trap System to Survey for Small 

Mammals and Herpetofauna 

Abstract 

Traditional surveys for small mammals and herpetofauna require intensive field 

effort because these taxa are often difficult to detect. Field surveys are further hampered 

by dynamic environmental conditions and dense vegetative cover, which are attributes of 

biodiverse wet meadows. Camera traps may be a solution, but commonly used passive 

infrared game cameras face difficulties photographing herpetofauna and small mammals. 

The Adapted-Hunt Drift Fence Technique (AHDriFT) is a camera trap and drift fence 

system designed to overcome traditional limitations, but has not been extensively 

evaluated. I deployed 15 Y-shaped AHDriFT arrays (three cameras per array) in northern 

Ohio wet meadows from March 10 to October 5, 2019. Equipment for each array cost 

approximately US$1,570. Construction and deployment of each array took about three 

hours, with field servicing requiring 15 minutes per array. Arrays proved durable under 

wind, ice, snow, flooding, and heat. Processing two-weeks of images of 45 cameras 

averaged about 13 person-hours. Arrays obtained 9,018 captures of 41 vertebrate species 

comprised of 5 amphibians, 13 reptiles (11 snakes), 16 mammals and 7 birds. Arrays 

imaged differing animal size classes ranging from invertebrates to weasels. I assessed 

detection efficacy using expected biodiversity baselines. I determined snake communities 
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from three years of traditional surveys. I estimated potential small mammal and 

amphibian biodiversity from prior observations and species ranges and habitat 

requirements. Arrays cumulatively detected all amphibians and 92% of snakes and small 

mammals that were expected to be present. Arrays also imaged four mammal and two 

snake species where they were not previously observed. However, capture consistency 

was variable by taxa and species. Low-mobility species or species in low densities may 

not be detected. In its current design, AHDriFT proved to be effective for terrestrial 

vertebrate biodiversity surveying. 

Introduction 

Biological surveys often focus on select taxa due to species-specific activity and 

behavioral patterns, detection (the probability of documenting a present organism), and 

established sampling methods. Broad biodiversity surveys thus necessitate researchers or 

teams with a multitude of skills and can consume considerable time and resources 

(Garden et al. 2007). Camera trapping is increasingly popular in conservation research 

and monitoring to reduce field effort. Camera traps are remotely operated cameras that 

photographs an area either on a trigger or timer to document passing wildlife, and are 

typically used to image species that are difficult to visually observe (Swann et al. 2004). 

 Researchers have a number of options when considering camera trap deployment 

(Rovero et al. 2013). Laser active trigger camera traps record an image when a constant 

laser is interrupted. Environmental conditions such as vegetation or mud splashes from 

precipitation can block the laser and trigger the camera trap without animals present 

(Guyer et al. 1997; Hobbs and Brehme 2017). Time-lapse camera traps are set to record 
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at or over predetermined time intervals regardless of animal presence (Geller 2012). 

These cameras can consume substantial battery power and need to be frequently serviced 

(Glen et al. 2013; Rovero et al. 2013; Meek et al. 2014). Passive infrared (PIR) camera 

traps ideally only trigger when the sensor detects a thermal infrared differential caused by 

a passing animal. This limits PIR camera battery usage and generally minimizes the 

number of images without animals (Swann et al. 2004). They also outperform some other 

passive triggers, such as microwave sensors (Glen et al. 2013). These properties have 

established PIR camera traps as the most commonly used commercial game cameras 

(Swann et al. 2004; Rovero et al. 2013; Meek et al. 2014). 

 Passive infrared sensors are often misunderstood to detect body temperature, core 

temperature, ambient temperature, or heat-in-motion. Rather, they detect an infrared 

discrepancy caused by an object surface that is sufficiently hotter or colder than the 

background surfaces (Welbourne et al. 2016). This is not typically an issue for large-

bodied endotherms. However, ectothermic and small-bodied animals (e.g., herpetofauna, 

mice, voles, shrews) can have surface temperatures too similar to background surfaces to 

trigger PIR sensors (Welbourne 2014). Passive infrared camera sensitivity (propensity to 

trigger when an animal is under the camera sensor) is thus a challenge when applied to 

these taxa (Glen et al. 2013; Merchant et al. 2013; Welbourne 2014). As such, researchers 

may choose active laser (Hobbs and Brehme 2017) or time-lapse (Geller 2012) cameras 

or rely on traditional methods, especially for ectotherms. Indeed, reptile surveys rarely 

apply camera traps and instead typically use traditional visual encounter, artificial cover, 

or live trapping (pitfall or funnel) methods (Dorcas and Willson 2009; McDiarmid et al. 



4 

 

2012). Still, PIR camera traps compare favorably to traditional small mammal snap or 

live-trapping (De Bondi et al. 2010). 

 Researchers have also needed to compromise between the area of camera 

coverage (i.e., detection zone) versus the detail of the images for species identification 

(DeSa et al. 2012; Glen et al. 2013). Most camera traps are set in open environments with 

a wide detection zone (Swann et al. 2004). This can result in images where it is difficult 

to identify small-bodied animals to the species-level. Narrow detection zones are better 

for acquiring photos capable of identifying small-bodied species but may miss more 

animals (Glen et al. 2013). 

 There have been recent attempts to solve the PIR sensitivity and detection zone 

issues when camera trapping small mammals and herpetofauna. Drift fences combined 

with traps are a favored method to capture species of herpetofauna (Campbell and 

Christman 1982; Greenberg et al. 1994; Ryan et al. 2002; McDiarmid et al. 2012) and 

small mammals (Williams and Braun 1983; Mitchell et al. 1993) that are otherwise 

difficult to observe. The Camera Overhead Augmented Temperature (COAT) system 

uses drift fences to concentrate animals into a central gap (Welbourne 2013). Thermally-

homogeneous background surfaces are necessary for ideal PIR sensitivity (Welbourne et 

al. 2016). The COAT camera is therefore aimed downwards at a cork board, which 

provides a somewhat thermally-homogeneous background surface. This increases PIR 

sensitivity compared to cameras aimed at the ground or into open space (Welbourne 

2013; Welbourne et al. 2016). Even so, COAT has limited sensitivity, operates best only 

during certain hours, and doesn’t capture animals moving outwards along the fence 
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(Welbourne 2014). Meanwhile, the Hunt Trap places a PIR camera inside of an inverted 

bucket housing unit equipped with bait (McCleery et al. 2014). The bucket results in a 

narrow detection zone and the lid is thermally-homogeneous. Buckets also provide 

cameras with consistent shade, protection, and stable environmental conditions relative to 

the open air. This set-up should remove or alleviate PIR camera problems at high ambient 

temperatures seen in conventional deployment (Swann et al. 2004). Overall, these factors 

allow Hunt Trap cameras to be durable, sensitive, and able to obtain clear pictures for 

species identification. Yet the system omits species not attracted to the bait and can 

capture many images of an individual (McCleery et al. 2014).  

 The Adapted-Hunt Drift Fence Technique (AHDriFT) combines the strengths of 

the COAT and Hunt Trap methods (Martin et al. 2017). Drift fences funnel animals under 

PIR cameras inside of modified Hunt Traps. This system encompasses the biodiversity 

sampling benefits of traditional drift fences (McDiarmid et al. 2012), enhances PIR 

sensitivity (Welbourne at al. 2016), and allows for detailed images (McCleery et al. 

2014). Martin et al. (2017) photographed 32 vertebrate species and identified species in 

98% of AHDriFT images. As with Hunt Traps, ambient temperatures due to night, sunny, 

or cloudy conditions should not strongly influence camera durability or sensitivity. 

Camera batteries and SD cards can also be easily changed in the field without 

deconstructing equipment. Martin et al. (2017) asserts that AHDriFT reduced their field 

time by 95% compared to drift fences and traps. Camera traps are also non-invasive, 

which removes the ethical issue of animal trapping mortality (De Bondi et al. 2010; 

Edwards and Jones 2014) as well as permit restrictions for listed or venomous species.  
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 Taken together, these traits make AHDriFT a potential alternative to traditional 

drift fence and trapping. Yet, while conceptual testing has produced promising results, 

the method has not been extensively evaluated. For example, the original design was for 

Florida sand dunes, which may experience static and fair environmental conditions 

relative to some other ecosystems. Even so, the original cameras only operated 84% of 

deployment time (Martin et al. 2017). Whether the method is durable enough for 

widespread application under more strenuous environmental conditions is unresolved. 

Further, the method’s ability to adequately capture biodiversity also remains untested. 

 Northern Ohio wet meadows are open-canopy systems characterized by organic-

rich mineral soils, high and fluctuating water tables, and herbaceous vegetation (Sears 

1926). Unlike Florida sand dunes, they experience a range of environmental conditions 

over a typical biological field season (March – October), such as strong winds, snow, ice, 

rain, flooding, heat, fast vegetative growth, and dynamic water tables. Wet meadows also 

have greater biodiversity than sand dunes, including rare and imperiled species in Ohio 

(ODNR 2020), but dense vegetation hampers traditional detection of many species 

(Slaughter and Kost 2010). Burrowing species present an additional potential challenge 

for AHDriFT maintenance and efficiency. Holes or tunnels under the drift fences or 

buckets reduce the likelihood that animals are coaxed into the camera traps. These 

characteristics make northern Ohio wet meadows ideal for camera trap deployment and 

for testing AHDriFT in strenuous and biodiverse environments.  

 I modified AHDriFT for wet meadow conditions and assessed its durability and 

required effort. I compared our small mammal and herpetofauna detections to 
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biodiversity baselines, including established snake community data. I then generally 

compared AHDriFT species capture efficiency to other traditional and PIR camera trap 

methods. I also provide detailed methodological instructions, practical information, and 

recommendations for researchers and managers interested in AHDriFT. 

Methods 

I selected 15 wet meadow fields across northern Ohio in Wyandot, Huron, and 

Ashtabula Counties, with a mean size of 10.39 ha (median = 3.50 ha; range = 0.39 – 

71.78 ha). I chose fields with known snake communities in order to assess detection 

efficacy against an established biodiversity baseline because snakes are traditionally 

difficult to detect (Steen 2010; Durso and Seigel 2015), and their biodiversity can be 

challenging to capture without employing multiple methods or long-term studies (Kéry 

2002; Dorcas and Willson 2009; McDiarmid et al. 2012). I determined snake 

communities in each field from at least three years of traditional visual encounter and 

artificial cover (corrugated tin sheets) surveys (Gregory J. Lipps Jr. and Nicholas A. 

Smeenk, unpubl. data). I did not have field-level amphibian and small mammal 

community information from prior surveys. Instead, I used previous opportunistic 

observations, Ohio range maps, and species habitat requirements (Bokman et al. 2016; 

Parsons et al. 2019) to determine species that could potentially occur in these fields. 

 I modified AHDriFT from the original design (Martin et al. 2017) to an omni-

directional Y-shape configuration, with an “array” defined as three camera traps 

connected by drift fences (Figure 1A). I considered an entire array as one sampling unit 

(i.e., the three cameras as non-independent). I used 1.27 cm thick oriented strand board 



8 

 

for the drift fences and metal fence posts for support. Each array arm measured 4.88 m in 

length. Construction materials and detailed deployment instructions are available as an 

open-source online publication (https://doi.org/10.6084/m9.figshare.12685763.v1). I 

deployed one array at the geometric center of each field (15 arrays; 3 cameras per array, 

45 total cameras) from March 10 to October 5, 2019. I used Reconyx Hyperfire 2 

Professional PIR camera traps (model: HP2X Gen3) with custom flash and 28 cm focal-

lengths modified by the manufacturer. These adjustments increased image clarity by 

focusing the cameras and flash to the distance to the bucket lid. I selected camera settings 

of highest sensitivity and three-image burst per trigger event. I used rechargeable NiMH 

AA batteries (EBL 1.2V HR 6; 2,800 mAh) and 32-GB SD cards to allow the cameras to 

operate continuously. I examined arrays every 7 – 14 days for damage and gaps under the 

fences, buckets, guide boards, and fence joints. I changed camera SD cards and batteries 

every two-weeks. 

 I broadly defined a camera “false-trigger” as any image that did not capture an 

animal or animal part. I manually processed raw images by removing false-triggered 

images and assigning species images into designated folders. I used the R package 

‘camtrapR’ (Niedballa et al. 2017, version 1.1; R Core Team 2019, version 3.6.1) to 

compute a species capture record table. I determined species captures using a 60-minute 

interval between images of the same species at a given array. This framework ensured 

that the dataset was not inflated by an individual rapidly moving around a camera or an 

array (Martin et al. 2017). 

https://doi.org/10.6084/m9.figshare.12685763.v1
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Results 

Deployment, operation, and servicing 

 The equipment cost of each array was about US$1,570 (Table 1). The arrays 

withstood all environmental fluctuations, including wind, ice, flooding, freezing, and heat 

(daily temperatures ranged from -10 – 36°C). The only operational maintenance required 

was minor fence back-filling of gaps with mud in the first weeks following deployment. 

After the water tables settled, I did not need to conduct repairs. Arrays remained 

operational despite vegetative growth and I did not observe any holes or tunnels created 

by burrowing species. Paper Wasps (Polistes spp.) and Mud Daubers (Sceliphron 

caementarium) sometimes built nests in the buckets or on the cameras. New vegetation 

also occasionally grew into the buckets. While these factors resulted in more false-

triggers, they were easily removed and did not impair array operation. The 45 cameras 

operated 9,198 of the 9,204 trap-nights (one camera malfunctioned for six days). The 

malfunction appeared to be due to a hardware issue. I did not observe camera problems or 

changes in their efficiency due to overheating or general environmental conditions.  

 I constructed each camera trap housing unit in about one-hour and deployed each 

array in about two-hours (Table 2). When checking the cameras, batteries typically read 

“full” charge with only one occasion showing 50%. The 32-GB SD cards usually read 

0% full, although two unusual occasions each used 16% of capacity (~22,500 and 28,000 

images). Those occasions were due to false-triggers by one camera. I resolved the 

problem by lowering that camera’s sensitivity setting by one level. I suspect that the 

camera’s oversensitivity was caused by a preexisting mechanical issue. Swapping SD 
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cards and batteries averaged 13.96 minutes (± 3.21) per array for one researcher, typically 

faster in warm and dry weather. Two weeks’ worth of images of all 45 cameras required 

6 – 19 person-hours to process (x̄ = 13.08 ± 3.84). The shortest processing times were in 

the spring (March – May) when animals were less active. The longest processing times 

resulted from when there were unusually large amounts of false-triggers. 

Species captures  

 Arrays recorded 190,851 false-triggered images (52.57 GB). The primary causes 

of false-triggering were flooding and daylight shifts, influenced by bucket orientation on 

the landscape. Arrays obtained 75,477 species images (18.4 GB) with a per camera mean 

of 1,679 (± 830) species images. Discounting the two unusual false-trigger occasions by 

one camera, arrays had approximately two false-trigger images per species image. This 

compares to an upwards of 50:1 false-trigger to species image ratio during original 

AHDriFT testing (Scott Martin, The Ohio State University, pers. comm.). Arrays 

obtained excellent image quality (Figure 2) and I identified all vertebrate images to the 

species-level. Arrays recorded a total of 9,018 captures from 41 species, including 5 

amphibian, 13 reptile (11 snake), 16 mammal, and 7 avian species (Table 3). Arrays 

imaged an average of 21 species per array, with a range of 16 – 24. I also recorded the 

total number of invertebrate detections which included ants, bees, wasps, beetles, flies, 

moths, mantids, and spiders. Mammals had the most captures (4,595), followed by 

reptiles (2,495), invertebrates (987), birds (889), and amphibians (52). Array captures per 

unit effort (array trap nights) were comparable to or sometimes greater than traditional 

methods (Table 4). 
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Discussion 

My AHDriFT design (Figure 1) has some potential limitations. The biggest 

obstacle is the upfront cost of the equipment per array (Table 1). Camera trapping 

generally requires more initial investment than traditional survey methods (Garden et al. 

2007). Nonetheless, AHDriFT is substantially less expensive than some other camera trap 

systems for small mammals and ectotherms (Hobbs and Brehme 2017). There are also 

some areas where costs can be reduced or minimized. Equipment costs can be reduced by 

a third by deploying a two-camera linear array in narrow areas where the drift fence will 

effectively intercept moving animals. Researchers can also purchase SD cards with 

smaller memory than I used.  

While some material costs can be lowered, I do recommend investing in high-

quality cameras. The professional-grade cameras operated continuously except for one 

camera for six days, outperforming the consumer-grade cameras used by Martin et al. 

(2017). I recognize that our enhanced camera performance may also be attributed in part 

to my modified design. For example, I attached the cameras to opaque acrylic rather than 

to transparent plexiglass (Martin et al. 2017), which may have better prevented 

overheating.  

I also achieved much lower false-trigger rates compared to the original design, but 

this is likely due to using professional-grade cameras (Glen et al. 2013). I recommend 

field research comparing different camera trap models in both my and the original 

AHDriFT designs. For the drift fences, sturdy materials allowed them to endure dynamic 

conditions and remain suitable for a second field season. I also note that cameras can be a 
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long-term investment. Multi-season studies can therefore benefit by investing in quality 

materials despite upfront costs.  

 Further, in some cases AHDriFT may be more cost-efficient than traditional 

methods because arrays minimize field effort (Table 2). Traditional methods may need 

low upfront investment, but their field requirements can ultimately lead to higher costs 

than camera trapping (Garden et al. 2007). Although I changed SD cards and batteries 

every two-weeks, arrays likely only need to be serviced every 4 – 8 weeks. Reducing 

field person-hours may be particularly cost-effective for labor-intensive surveys for 

diverse taxa or research in dynamic ecosystems. As such, research targeting multiple 

species may particularly benefit by using AHDriFT to simultaneously survey for 

numerous species. Image processing effort can also be reduced if researchers are 

interested only in certain species. Much of my processing time was spent sorting every 

species image, particularly of common species such as Deer Mice (Peromyscus spp.), 

Common Five-lined Skinks (Plestiodon fasciatus), and Song Sparrows (Melospiza 

melodia).  

 A second obstacle of my array design is transporting and deploying materials. The 

oriented strand board drift fences are heavy, especially after soaking up water. Erecting 

arrays also entailed strenuous physical effort. Using light-weight corrugated plastic for 

fences may reduce physical strain, and its durability is currently being tested. Silt fencing, 

metal flashing, or wildlife exclusion fencing may be viable options as well. I also dug 

trenches by hand using a mattock, but fences may be installed quicker and easier using a 
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powered trencher. This limitation is not inherent of AHDriFT and is equivalent to 

traditional drift fence deployment.  

 Thirdly, researchers interested in a particular species or taxa should consider life 

history traits to select the most appropriate survey method. Although I imaged seven 

avian species, AHDriFT is designed for ground-dwelling species and does not adequately 

capture avian biodiversity. Of the avian captures, 75% were Song Sparrows and 21% 

were Northern House Wrens (Troglodytes aedon). Drift fences also rely on animals 

encountering and moving along them. Thus, AHDriFT is most effective at imaging 

highly mobile species or species present in dense populations. For example, Eastern 

Gartersnakes (Thamnophis sirtalis) and Masked Shrews (Sorex cinereus) had the most 

captures, and arrays frequently imaged mice and voles (Microtus spp.; likely M. 

pennsylvanicus; Table 3). All of these species are numerous in these fields and actively 

forage for food (Bokman et al. 2016; Gibbons 2017).  

Meanwhile, species in low densities or low-mobility species likely have reduced 

probability of encountering the drift fences. For example, arrays imaged 7 of the 12 

possible snake species in all fields where they are known to occur (Table 3). Snake 

species not imaged in a field typically had only one, and no more than five, prior 

observations in that field over three years of traditional surveys (Gregory J. Lipps Jr., 

unpubl. data). The exception is Kirtland’s Snakes (Clonophis kirtlandii), which are 

abundant in two of our fields. Kirtland’s Snakes have fossorial life histories, low-

mobility, and tend to move through or under the vegetative thatch (Gibbons 2017). These 
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traits likely reduce the probability that they move along drift fences or under the camera 

traps.  

Taken together, AHDriFT can miss low-mobility species or species in low 

densities. Nonetheless, I contend that this limitation is generally applicable to camera 

trapping (De Bondi et al. 2010) and traditional drift fence and trapping (Steen 2010). I 

also note that I did not test camera sensitivity of all species in all environmental 

circumstances. For example, I suspect that amphibians moving during rain events may 

not have been consistently captured (Martin et al. 2017). This may explain why arrays did 

not detect amphibians in all expected fields and the generally low capture counts for the 

taxa, despite that the arrays cumulatively captured all amphibian biodiversity (Table 3). 

Of course, no single survey method is without flaws or biases towards specific taxa. I 

encourage research into AHDriFT detection of specific target species. 

 Lastly, data derived from a single array in a field is likely best used for presence-

absence research. Species occupancy modelling can be a potential application of camera 

trap data and combined with environmental, climatic, and spatial covariates (Tobler et al. 

2015). However, I obtained too few captures per field for population-level analyses of 

some species. Researchers seeking to infer species abundance or activity should carefully 

consider potential limitations to detection when designing a study. On-going research is 

investigating the cost-efficiency of deploying multiple arrays per field to increase 

detections.  

 The use of AHDriFT images for capture-mark-recapture studies would also 

present a challenge. One reason is due to the variability in how animals entered the 
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buckets or the physical condition inside of the buckets (leaves, water, etc.). These 

conditions sometimes made unique patterns difficult to discern, especially at night. 

Automated identification software also needs a degree of image standardization and 

much larger datasets (Schneider et al. 2019). Furthermore, while Passive Integrated 

Transponders (PIT tags) are commonly used in capture-mark-recapture (Gibbons and 

Andrews 2004), readers placed in the camera trap buckets may not be effective because 

animals did not always fully enter the buckets, and so may not activate the PIT reader. 

The efficacy of PIT readers combined with AHDriFT can nonetheless be a valuable route 

for future research. As of this writing, I recommend traditional survey methods such as 

trapping to identify individuals. 

 Despite limitations, I found that AHDriFT is an effective new method in general 

small mammal and herpetofauna surveying. Traditional survey methods can vary in the 

biodiversity observed of small mammals (Sealander and James 1958) and herpetofauna 

(Dorcas and Willson 2009). Meanwhile, arrays detected a wide range of multi-taxa 

biodiversity and 92% of expected snakes and small mammals (Table 3). Importantly, this 

biodiversity included species of different size classes, ranging from invertebrates and 

mice to weasels and mink. I also imaged many species that are traditionally difficult to 

detect, such as moles and snakes. This includes four mammal and two snake species in 

fields where they were not previously observed or expected (Table 3). Although I did not 

image Least Shrews (Cryptotis parva), I note that they are rare in Ohio (Bokman et al. 

2016), and whether the species truly occurs in these fields is unknown. Using camera 

traps also removed the serious issues of animal mortality and small mammal bait bias 
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associated with traditional trapping (Beer 1964; De Bondi et al. 2010; Edwards and Jones 

2014). Further, traditional survey methods often have few or highly variable captures per 

unit effort (Table 4). I found that AHDriFT was generally equitable in this metric 

compared to traditional techniques. I could also have decreased the frequency of my field 

visits, which would have increased array captures per unit effort. However, I caution 

against stringent interpretation of capture rates across studies of different ecosystems, 

populations, and species. More research is needed to better quantitatively compare 

detection rates of different methods in the same geographic and temporal settings. 

 Nonetheless, AHDriFT generally performed well compared to other PIR camera 

trap systems for small mammals and herpetofauna. While the Hunt Trap is bait-biased 

(McCleery et al. 2014), arrays captured diverse species and size classes (Table 3). Still, 

my array design is not suitable for the tidal environments that the Hunt Trap was 

designed for (McCleery et al. 2014). Additionally, in 300 days COAT imaged 118 

reptiles (Welbourne 2014), while in just 210 days arrays averaged 166 reptile captures 

per array. This may be in part because COAT primarily worked during the day after the 

cork was sufficiently warmed (Welbourne 2014) and more thermally-homogeneous 

(Welbourne et al. 2016). The arrays operated continuously and were extremely sensitive, 

even capturing small invertebrates. The distance of the COAT camera to the ground (70 

cm) and size of the detection zone also limited its image quality (Welbourne 2015). 

Arrays obtained superb species-level images using custom focal-length cameras (Figure 

2). 
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 Overall, I recommend utilizing AHDriFT to establish site terrestrial vertebrate 

biodiversity or to target multiple species concurrently. Surveyors seeking to limit person-

hours can camera trap numerous sites that would traditionally require intensive field 

effort. These applications can be especially beneficial to land trusts, permitting agencies, 

wildlife managers, developers, and environmental consultants. There is also the 

possibility of incorporating the method into citizen science programs, which could reduce 

the time required by researchers to verify species identifications (McShea et al. 2016; 

Schuttler et al. 2019). I conclude that AHDriFT can be a powerful research, management, 

and conservation tool for small mammals and herpetofauna. 
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Tables 

Table 1. Estimated material cost (USD) per AHDriFT array (Y-shaped). Camera traps 

were customized by the manufacturer to a focal-length of 28 cm. I include double the SD 

cards and batteries needed to set the cameras so that they can be swapped and allow for 

continuous camera operation. The total number of units needed of each piece of 

equipment is provided (in parentheses). Estimated costs represent the approximate total 

sum needed to purchase all the units needed of each piece of equipment. 

Equipment  Estimated cost (USD) 

Camera trap supplies 
 

Reconyx PIR custom cameras (3) 1,200 

Rechargeable AA batteries (72) 90 

SD cards (6) 60 

TOTAL 1,350 

Camera trap housing unit supplies  

5-gallon buckets and lids (3) 20 

Acrylic sheets (3) 40 

Spray paint (1) 4 

L-brackets (9) 4 

Machine screws / hex nuts (39) 10 

Washers (12) 2 

Wing nuts (9) 3 
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Table 1 Continued  

Equipment  Estimated cost (USD) 

Drywall screws (24) 4 

Metal rods (3) 8 

Wood studs (2) 5 

TOTAL 100 

Drift fence supplies  

Oriented strand boards (3) 60 

Metal fence posts (13) 45 

Zip-ties / screws / nuts 15 

TOTAL 120 

TOTAL 1,570 
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Table 2. Typical effort breakdown for constructing and servicing arrays, and the image 

processing time for all three cameras used in an array. Time range (minutes) minimums 

and maximums are approximated for array construction and for the final record table. 

Time range (minutes) minimums and maximums are exact for data acquisition and 

processing effort (mean ± standard deviation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Task per array         Time (mins) 

AHDriFT array construction  

Build three camera trap housing units  135 – 180  

Deploy one array (one person) 90 – 120    

Deploy one array (two people) 60 – 90  

Deploy one array (three people) 30 – 50  

Deploy one array (four people) 30 – 45  

Data acquisition and processing  

Change batteries and SD cards  9 – 25 (13.96 ± 3.21)  

Process two-weeks of images  24 – 76 (52.32 ± 12.84)  

Final record table (‘camtrapR’) 5 – 10 
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Table 3. Species image capture events (Captures) using AHDriFT. The number of fields 

that a species was imaged in (Fields) is followed by the total number of possible fields in 

which the species is known or expected to occur (in parentheses). Field values marked 

with an asterisk (*) indicate imaged species that are not known or expected to be in these 

fields, but have been observed in or could potentially inhabit adjacent areas. Listed 

species have designations after their common names (E = Ohio Endangered; SC = Ohio 

Species of Concern; R = Rare in Ohio; LT = Federally Threatened). 

Species Common name / status Captures Fields 

Amphibians    

Ambystoma texanum Small-mouthed Salamander 1 1(2) 

Anaxyrus americanus American Toad 11 6(15) 

Lithobates catesbeianus American Bullfrog 1 1* 

Lithobates clamitans Green Frog 15 9(15) 

Lithobates pipiens Northern Leopard Frog 24 9(15) 

Reptiles    

Chrysemys p. marginata Midland Painted Turtle 3 3* 

Clonophis kirtlandii Kirtland’s Snake 0 0(2) 

Lampropeltis triangulum Eastern Milksnake 10 5(8) 

Nerodia s. sipedon Northern Watersnake 9 8(8) 

Opheodrys vernalis Smooth GreensnakeE 15 2(2) 

Pantherophis spiloides Gray [Black] Ratsnake 8 5(1) 

Plestiodon fasciatus Common Five-lined Skink 490 10(12) 
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Table 3 Continued    

Species Common name / status Captures Fields 

Sistrurus catenatus Eastern Massasauga RattlesnakeE, LT 72 12(13) 

Storeia dekayi Dekay’s Brownsnake 69 12(15) 

Storeia occipitomaculata Northern Red-bellied Snake 3 2(4) 

Thamnophis butleri Butler’s Gartersnake 24 1(1) 

Thamnophis radix Plains GartersnakeE 26 2(2) 

Thamnophis sauritus Eastern Ribbonsnake 21 6(1) 

Thamnophis sirtalis Eastern Gartersnake 1,745 15(15) 

Mammals    

Blarina brevicauda Northern Short-tailed Shrew 152 15(15) 

Condylura cristata Star-nosed MoleSC 16 9(12) 

Cryptotis parva Least ShrewR 0 0(15) 

Didelphis virginiana Virginia Opossum 58 13(15) 

Marmota monax Groundhog 7 5* 

Mephitis mephitis Striped Skunk 7 4* 

Microtus spp. Voles 1,390 15(15) 

Mustela frenata Long-tailed Iasel 97 12(15) 

Napaeozapus insignis Woodland Jumping MouseSC 396 13(13) 

Neovision vision American Mink 11 4(12) 

Peromyscus spp. Deer Mice 1,031 15(15) 

Procyon lotor Raccoon 8 5* 
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Table 3 Continued    

Species Common name / status Captures Fields 

Rattus norvegicus Brown Rat 1 1* 

Sorex cinereus Masked Shrew 1,135 14(15) 

Sylvilagus floridanus Eastern Cottontail 212 11(15) 

Tamias striatus Eastern Chipmunk 32 7(10) 

Zapus hudsonius Meadow Jumping MouseR 41 3(3) 

Birds and invertebrates    

Dumetella carolinensis Gray Catbird 5 2 

Geothlypis trichas Common Yellowthroat 58 12 

Melospiza melodia Song Sparrow 633 14 

Passerina cyanea Indigo Bunting 5 1 

Porzana carolina SoraSC 1 1 

Siala sialis Eastern Bluebird 1 1 

Troglodytes aedon Northern House Wren 186 12 

Invertebrate spp. Invertebrates 987 15 
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Table 4. Comparison of catch per unit effort (CPUE) of traditional survey techniques and 

passive infrared (PIR) camera trapping for common taxa across published studies. 

Camera trap methods include the Adapted-Hunt Drift Fence Technique (AHDriFT) and 

PIR game cameras conventionally deployed without drift fences. Sherman livetrap 

method refers to deployment without drift fences. Drift fence and live-trap combinations 

(DF + live-trap) for small mammals employ either Sherman, Elliot, or cage live-traps. 

Drift fence and live-trap combinations (DF + live-trap) for snakes employ pitfall or 

funnel traps. I estimated CPUE from total captures divided by total trap nights of all 

sampling units or independent surveys. A single array or traditional drift fence and trap 

plot, regardless of the number of cameras or traps, is considered as one sampling unit for 

the purpose of generalizing data. Snake visual and artificial cover surveys categories 

define each survey of a site as one unit of effort, regardless of walking transect or cover 

object densities. 

Species Method CPUE Ecosystem Reference 

Mouse spp. AHDriFT 0.47 Wet meadow This study 

  0.42 Sand dune Martin et al. (2017) 

 PIR game cameras 0.02 Tidal salt marsh DeSa et al. (2012) 

 Snap-trap 2.20 Forest Williams and Braun (1983) 

 Sherman live-trap 0.25 Forest Williams and Braun (1983) 

  0.13 Forest Bruseo and Barry Jr. (1995) 

 DF + live-trap 0.70 Forest Williams and Braun (1983) 

  0.05 Ephemeral pool Edwards and Jones (2014) 
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Table 4 Continued     

Species Method CPUE Ecosystem Reference 

Vole spp. AHDriFT 0.44 Wet meadow This study 

 PIR game cameras 0.00 Tidal salt marsh DeSa et al. (2012) 

 Snaptrap 0.00 Forest Williams and Braun (1983) 

 Sherman live-trap 0.00 Forest Williams and Braun (1983) 

 DF + live-trap 0.25 Forest Williams and Braun (1983) 

  <0.01 Ephemeral pool Edwards and Jones (2014) 

Shrew spp. AHDriFT 0.41 Wet meadow This study 

  0.02 Sand dune Martin et al. (2017) 

 Snap-trap 0.05 Forest Williams and Braun (1983) 

 Sherman live-trap 0.00 Forest Williams and Braun (1983) 

 DF + live-trap 3.25 Forest Williams and Braun (1983) 

  0.16 Ephemeral pool Edwards and Jones (2014) 

Snake spp. AHDriFT 0.64 wet meadow This study 

  0.16 Sand dune Martin et al. (2017) 

 PIR game cameras 0.01 Cliff / beach Ilbourne (2014) 

 Visual survey 0.22–0.74 Variable Kéry (2002) 

 Artificial cover 0.37 Grass / scrub Kjoss and Litvaitis (2001) 

 DF + live-trap 0.05 Grass / scrub Kjoss and Litvaitis (2001) 

  0.02 Sand pine scrub Greenberg et al. (1994) 
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Figures 

 
 

Figure 1. (A) Y-shaped Adapted-Hunt Drift Fence Technique (AHDriFT) array in a 

recently mowed wet meadow field in mid-March, 2019 in Ashtabula County, northern 

Ohio. An “array” consisted of three passive infrared (PIR) camera traps each set inside of 

a modified inverted bucket housing unit and placed at the ends of three 4.88 m long drift 

fences; (B) the entrance of the modified inverted bucket housing unit that connects to the 

drift fence, with external wooden guide boards; and (C) a downward-facing PIR camera 

trap attached to a white acrylic sheet over the internal wooden guide boards inside of a 

bucket housing unit. 
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Figure 2. Sample species-level camera trap images captured using AHDriFT. (A) 

Woodland Jumping Mouse Napaeozapus insignis; (B) Star-nosed Mole Condylura 

cristata; (C) Eastern Milksnake Lampropeltis triangulum; (D) Smooth Greensnake 

Opheodrys vernalis; (E) American Mink Neovision vision consuming an Eastern 

Gartersnake Thamnophis sirtalis; and (F) Northern Leopard Frog Lithobates pipiens. 
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Chapter 2. Use of AHDriFT to Efficiently Survey for Sistrurus catenatus 

Abstract 

The Eastern Massasauga Rattlesnake (Sistrurus catenatus) is Federally 

threatened. Traditional visual encounter and artificial cover object survey techniques are 

effective but require intensive field effort. The Adapted-Hunt Drift Fence Technique 

(AHDriFT) is a camera trap and drift fence system that effectively images reptiles, 

including snakes. I assessed AHDriFT as a potential new Massasauga survey tool relative 

to traditional methods. Colleagues derived Massasauga population size estimates in 13 

wet meadow fields in northern Ohio from 3-y of traditional capture-mark-recapture 

surveys. I deployed one AHDriFT array (three cameras) per field from March to October 

2019. Arrays obtained a total of 72 Massasauga detections across 12 fields. My data 

suggest that total detection counts may increase with greater population density. 

Detection probability estimates in each field were typically under 0.30 per week. 

However, weekly detection probability rose to 0.40 during peak periods of Massasauga 

activity in the fall. Weekly detection probability also varied by as much as 0.10 due to 

temperature fluctuations. I estimated 0.48 snakes per person-hour using AHDriFT. This 

figure is comparable to published surveys and greater than the detection rates from 

traditional surveys in the same fields. Further, AHDriFT may be better suited for a wider 
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range of habitat types than traditional methods. Overall, I found that AHDriFT is an 

effective new Massasauga occupancy survey technique. 

Introduction 

The Eastern Massasauga Rattlesnake (Sistrurus catenatus) is a small (<70 cm) 

stout-bodied rattlesnake with populations centered around the North American Great 

Lakes region. They are considered endangered across nearly all of their historic range 

(Syzmanski et al. 2016) and are Federally threatened (USFWS 2016). The species 

requires open-canopy early-successional mixed-herbaceous grassland, meadow, or prairie 

that encompasses or is adjacent to wetlands that host burrowing crayfish (Moore and 

Gillingham 2006; Smith 2009; Ernst and Ernst 2011; Gibbons 2017; Lipps Jr and 

Smeenk 2017). Narrow habitat requirements make Massasauga vulnerable to habitat loss 

through vegetative succession, a primary driver of population declines (Szymanski et al. 

2016). Today, extant populations are generally small, isolated, and located on protected 

properties (Lipps Jr and Smeenk 2017). 

Rapid population declines have prompted extensive Massasauga spatial and 

habitat research (Szymanski et al. 2016), leading to the development of numerous habitat 

suitability models (Bissell 2006; Harvey and Weatherhead 2006; Moore and Gillingham 

2006; Bailey et al. 2012). The models aim to identify areas where Massasauga may occur 

so that conservation sites can be quickly delineated. However, the habitat suitability 

models are unable to reliably predict Massasauga occurrence and the predicted suitable 

habitat typically overestimates actual occupancy (McCluskey 2016; Lipps Jr and Smeenk 

2017). The discrepancy between predicted and actual occurrence may in part be because 
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the models do not incorporate historical land uses or landscape resistances. Such 

influences include localized persecution of the species and barriers to movement such as 

roads and unsuitable habitat matrices (Chiucci and Gibbs 2010; Willson 2016; 

McCluskey et al. 2018). Therefore, effective Massasauga field surveys are critical to 

establish or validate site occupancy and monitor declining or fragmented populations. 

The balance between field effort and obtaining snake detections is a common 

issue faced by researchers (McDiarmid et al. 2012). Snakes are generally difficult to 

observe because they are secretive (Steen 2010; Durso and Seigal 2015), cryptic, and can 

move slowly and infrequently (Greene 1997). Traditional visual encounter surveys (VES) 

and artificial cover object (ACO) surveys are effective at detecting snakes and obtaining 

detailed data on individuals, but require considerable time investment (Kéry 2002; 

Dorcas and Willson 2009; McDiarmid et al. 2012).  

Visual encounter surveys entail walking sites or transects (McDiarmid et al. 

2012). Detection rates and probability can be influenced by observer identity if variation 

in detection skill among multiple observers is not adequately accounted for in the models 

(Dorcas and Willson 2009; Albergoni et al. 2016). Artificial cover object surveys 

typically place plywood or corrugated metal sheets flat on the ground (McDiarmid et al. 

2012). Temperate snakes thermoregulate by moving to areas of relative warmth or 

coolness compared to the ambient conditions (Greene 1997). The ACO create attractive 

refugia for thermoregulation and congregates snakes that are otherwise difficult to find 

(McDiarmid et al. 2012). However, detection probability is variable by species, cover 

material, and length of deployment (Parmelee and Fitch 1995; Fitzgerald 2012; Willson 
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2016). Whether snakes are observed under ACO is also influenced by survey timing and 

environmental conditions (Joppa et al. 2009). 

The U.S. Fish and Wildlife Service endorsed Massasauga survey protocol 

recommends at least 40 person-hours of VES per year and 10-y before declaring species 

absence (Casper et al. 2001). The Ohio ACO (corrugated tin sheets) survey protocol for 

Massasauga requires about 25 weekly surveys without detections at a site to assume 

species absence (Lipps Jr and Smeenk 2017). Studies encompassing numerous sites or 

with limited time or resources may be unable to meet such requirements. Further, not all 

studies require identification of individual animals or aim to obtain detailed data on 

individuals (e.g., sex, snout-vent-length, mass, reproductive state). Therefore, camera 

trapping has been increasingly applied to herpetofauna surveys to reduce field effort 

when detection/non-detection data are of primary interest for more broadscale inference 

(e.g., occupancy; Guyer et al. 1997; Merchant et al. 2013; Welbourne 2014; Colley et al. 

2017).   

Camera traps are remotely operated cameras that image passing wildlife using a 

trigger, sensor, or timer.  Frequently used passive infrared (PIR) cameras activate when 

the sensor detects an infrared emission differential between the background and animal 

surfaces. Thus, PIR sensors may not trigger if the infrared differential is less than the 

sensor’s sensitivity threshold (Welbourne et al. 2016). Ectotherm surface temperatures 

can be similar to background surface temperatures, resulting in small infrared 

differentials that PIR sensors can fail to detect. Due to trigger sensitivity issues, 

conventional open-air deployment of PIR camera traps is often ineffective for imaging 
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ectotherms (Merchant et al. 2013; Welbourne 2014; Welbourne et al. 2016). Indeed, PIR 

camera traps have only had limited success when surveying for Massasauga in confined 

target areas such as eco-passages (Colley et al. 2017).   

A recently developed camera trap system, the Adapted-Hunt Drift Fence 

Technique (AHDriFT), was designed to image small-bodied mammals (e.g., mice, voles, 

shrews) and ectotherms in Florida sand dunes (Martin et al. 2017). Modified inverted 

buckets containing PIR trail cameras are placed at the ends of a drift fence. The buckets 

concentrate animals into a small detection zone, allowing for species-level identification 

(McCleery et al. 2014; Martin et al. 2017). Further, the bucket lids raise PIR sensitivity 

by providing thermal homogeneity under the camera sensors (Welbourne et al. 2016).  

Martin et al. (2017) found that AHDriFT reduced field effort compared to traditional 

techniques by 95% in surveys of small mammals and herpetofauna. Amber et al. 2020 

also demonstrated this benefit but identified the trade-off of not obtaining detailed data 

on individual animals. 

The AHDriFT system has shown great potential for implementation in snake 

occupancy surveys by detecting a range of species and size-classes (Martin et al. 2017; 

Amber et al. 2020). During pilot testing, AHDriFT recorded three Pygmy Rattlesnake 

(Sistrurus miliarius) detections (Martin et al. 2017). Pygmy Rattlesnakes are closely 

related to Massasauga, are of a comparable size, and have similar natural history 

characteristics (Ernst and Ernst 2011). The detections provide preliminary evidence that 

AHDriFT can detect Massasauga, but AHDriFT has never been specifically deployed for 

Massasauga occupancy surveys. There remains an unresolved potential for AHDriFT to 
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reduce the field effort demanded by traditional Massasauga survey techniques (Lipps Jr 

and Smeenk 2017). Here, I report a novel application of AHDriFT as a new Massasauga 

survey tool. The objectives of this study were to: (1) determine Massasauga detection rate 

and detection probability using a single AHDriFT array per field; (2) assess how 

temporal, environmental, and spatial covariates influence AHDriFT detection probability; 

and (3) quantitatively compare AHDriFT to traditional Massasauga survey methods. 

Methods 

Study sites 

I selected northern and northeastern Ohio fields where colleagues have previously 

conducted 3-y (2015-2017) of Massasauga capture-mark-recapture traditional surveys 

(Gregory J Lipps Jr., Nicholas A. Smeenk, Douglas Wynn, unpubl. data). I chose one 

8.82 ha field in Huron County that is isolated by agriculture. I chose a 26.83-ha field and 

a 71.78-ha field in Wyandot County that are separated by about 500-m of developed or 

agricultural matrix. I chose 10 fields in Ashtabula County within a 14-km2 area of the 

Grand River Lowlands, of which eight fields are isolated by roads or agriculture (mean 

size = 2.77 ha; range = 0.39 – 6.52 ha). I considered two partially connected fields as 

separate because prior research has shown limited exchange of individuals and high field 

fidelity (Gregory J. Lipps Jr., unpubl. data). I therefore considered all of the fields in this 

study as independent. The fields are covered by herbaceous vegetation such as 

goldenrods (Solidago spp.) and other forbs, with limited numbers of shrubs and small 

trees.   
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I categorized the fields as two different geographic regions. I grouped the 

Wyandot and Huron County fields as the southern region. These fields are located in the 

prairie peninsula (Transeau 1935) and include species such as Cordgrass (Spartina 

pectinata), Big Bluestem (Andropogon gerardii), Little Bluestem (Schizachyrium 

scoparium), Indiangrass (Sorghastrum nutans), and Reed Canary Grass (Phalaris 

arundinacea). I categorized the Ashtabula County fields as the northern region. These 

fields are mostly sedge meadows dominated by sedges (Carex spp.) and rushes (Juncus 

spp.).   

Traditional surveys 

I synthesized data from over 400 traditional VES and ACO surveys, totaling 

about 650 person-hours (Gregory J Lipps Jr., Nicholas A. Smeenk, Douglas Wynn, 

unpubl. data). Colleagues conducted VES and ACO surveys concurrently during each 

field visit. They recorded a single number of person-hours for the field visit, but tracked 

captures separately by method of observation. They conducted surveys over about 25 

weeks per year, following established Massasauga survey protocol in Ohio (Lipps Jr and 

Smeenk 2017). The VES entailed one or more researchers walking fields for 

approximately 30-min on average. The ACO surveys consisted of corrugated tin sheets 

(2.4 x 0.6-m) set in linear transects (1–2 tin sheets/ha) that were checked at least once per 

week while concurrently conducting VES (Lipps Jr and Smeenk 2017). Colleagues 

estimated Massasauga population size (number of individuals) in each field following the 

Schnabel method (Chapman and Overton 1966) using the R package ‘fishmethods’ 

(Nelson 2019, version 1.1; R Development Core Team 2019, version 3.6.1). 
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AHDriFT data collection 

I deployed 13 AHDriFT arrays from 10 March to 06 October 2019. Each array 

operated for 210 survey days (30 survey weeks). I built omni-directional Y-shaped 

AHDriFT arrays (Figure 3A) and placed one array at the geometric center of each field 

(three cameras per array, 39 total cameras) with one wing oriented to true north. This 

construction protocol standardized the array deployment between fields and simulated the 

use of AHDriFT by researchers surveying a new location (i.e., without the prior field-

level knowledge of Massasauga distributions and movements that I had available from 

previous studies). I constructed arrays to withstand the dynamic environmental conditions 

of wet meadows, including wind, ice, flooding, and heat. Detailed construction and 

deployment instructions are described elsewhere (Amber et al. 2020) and are also 

available as an open-source online publication 

(https://doi.org/10.6084/m9.figshare.12685763.v1). I used Reconyx Hyperfire 2 

Professional PIR camera traps (model: HP2X Gen3; Reconyx, Holmen, Wisconsin, USA) 

with focal lengths and flash customized by the manufacturer to 28 cm. I selected camera 

settings of highest PIR sensitivity and three-round image burst. I serviced arrays every 

two-weeks to ensure that they were operating continuously.  

I equipped an iButton Hygrochron temperature/humidity logger (model: DS1923; 

Maxim Integrated, San Jose, California, USA) at each array, which recorded ground 

temperature (°C) and relative humidity (%) data every 45-min. I set iButtons 5 cm above 

ground-level with sensors aimed groundward to avoid submersion under water.  

However, equipment malfunctions lost data prior to 11 June 2019. Therefore, I 
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downloaded hourly ambient temperature (°C) and relative humidity (%) data from the 

nearest National Oceanic and Atmospheric Administration (NOAA) weather stations 

starting from 10 March 2019. Since overlapping iButton and NOAA data captured 

similar weather patterns in each field (Pearson’s r = 0.89–0.93, P <<0.01), I determined 

that NOAA data was acceptable to use in my models for the dates prior to iButton 

malfunction. I also downloaded daily NOAA precipitation (mm) data for the entire study 

period. I averaged all weather data into weekly bins.   

I assessed eight covariates to account for spatial variation in detection probability 

(Table 11). I quantified vegetation height and density at each array using a Digital 

Imagery Vegetation Analysis (DIVA; Jorgensen et al. 2013) in mid-July 2019. I imaged 

the vegetation against a white poster board placed approximately 3 m from the ends of 

each array arm. I set the camera at about 0.5 m above the ground to image ground-level 

vegetation. I processed images in Adobe Photoshop (version CC-2018) by converting the 

vegetation to black pixels and recording the proportion of black pixels in the image 

(Jorgensen et al. 2013). I then averaged the black pixel proportions of the images from 

each array arm to obtain a single DIVA score per array. Higher DIVA scores represent 

taller and denser vegetation than lower scores.   

I extracted elevation, slope, and hydrologic flow rate using U.S. Geological 

Survey (USGS) 3x3 m digital elevation models (DEM) in ArcMap (version 10.0). I 

determined the dominant land cover at each array from field observations as either 

shrub/scrub or herbaceous cover. Colleagues created a GIS polygon layer of the fields in 

ArcMap and I input the layer into the R package ‘landscapemetrics’ (Hesselbarth et al. 
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2019, version 1.2.2) to determine field total areas, field edge habitat percentage, and 

distance of the arrays to forest edges. 

Analysis 

I processed AHDriFT camera trap images using the R package ‘camtrapR’ 

(Niedballa et al. 2017, version 1.1) and considered all three cameras at an array as one 

sampling unit. I defined detections as Massasauga images at a single array that were 

taken at least 60-min apart. The interval reduced the likelihood that detections were 

inflated by one individual moving around an array within a short timeframe (Martin et al. 

2017). On five occasions, cameras imaged two snakes within a 60-min interval at the 

same array (i.e., 10 total potential detections). On these occasions, I attempted to use 

dorsal patterns to differentiate individuals. However, I could not individually identify all 

snakes using this method since snakes were not imaged under standardized conditions.  

Five snakes only partially entered the buckets, the dorsal patterns of two snakes were 

obscured by water and debris, and one snake moved through the bucket at an angle along 

the internal guide boards. Under these conditions where I could not reliably differentiate 

individuals, I only included only one of the two potential detections in the dataset. I was 

able to confidently differentiate individuals on one occasion and counted both of those 

detections.   

I fit generalized linear mixed effects models (glmm) to test the effects of spatial 

and temporal covariates on AHDriFT detection probability. I built glmms using a 

Bayesian framework to account for small sample sizes using the R package ‘brms’ 

(Bürkner 2018, version 2.9). I modeled detection probability using separate spatial and 
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temporal models (Table 12). The spatial models fit non-temporal field-level covariates 

(N fields = 13) with Massasauga population size estimates grouped by geographic region 

(see Study sites above) as random slopes, and with geographic region as random 

intercepts. I fit two models under this framework. First, I modeled the number of 

Massasauga detections at each field using a Poisson glmm. Second, I assessed the 

number of weeks that AHDriFT detected Massasauga over the 30-week study period 

using a binomial glmm.   

The temporal model used a Bernouilli glmm to predict weekly detection 

probability from averaged weather covariates and the sampling season. I defined the 

season that each detection occurred in by evenly dividing the 30-week study period into 

three survey sessions. I considered the first 10-week survey session as spring (10 March–

19 May 2019), the second as summer (20 May–28 July 2019), and the last as fall (29 

July–06 October 2019). I binned temporal covariates and detections by week in order to 

account for infrequent daily detections. I set a random intercept of field nested within 

geographic region (i.e., 13 fields nested within northern (10) and southern (3) regions), 

and a random slope of Massasauga population size estimates grouped by geographic 

region. 

I scaled and centered all continuous predictors to have a mean of zero and 

standard deviation of one. I manually set all models with normally-distributed priors with 

a mean of zero and standard deviation of ten. I visually inspected model chains for 

mixing and used Gelman-Rubin statistics (Rhat < 1.1) to confirm convergence (Cowles 
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and Carlin 1996). I then assessed model fit with posterior predictive checks (Bürkner 

2018). 

I reduced the global additive models and selected the best-supported final models 

(Table 12) using the R packages ‘bayestestR’ (Makowski et al. 2019, version 0.3) and 

‘ggeffects’ (Lüdecke 2018, version 0.12). I fit eight additive models for each of the 

spatial analyses, step-wise removing insignificant parameters (see below). I reduced both 

spatial analyses to an additive model of population size estimate and field area. I then fit 

models with these variables as an interactive effect. I considered the global, reduced 

additive, and reduced interactive spatial models as candidate models for selection. I fit 

four additive models for the temporal analyses, step-wise removing parameters. For the 

global model and after each parameter removed, I fit all combinations of interactive 

effects. I considered all temporal models (n = 14) as candidate models for selection. 

To step-wise reduce the models, I retained the variables whose posterior 

distributions did not or only marginally included zero. I also checked if the variable had 

less than 11% of its posterior distribution within the Region of Practical Equivalence 

(ROPE; Piironen and Vehtari 2017). A small proportion of the distribution within ROPE 

suggests that the variable likely had a meaningful effect on the response. However, I only 

used ROPE as a secondary assessment to inform decisions on potentially marginally 

significant or insignificant variables, and did not necessarily remove all variables with 

above 11% ROPE. 

I conducted model selection of the candidate spatial and temporal models using 

Watanabe-Akaike information criterion (WAIC) and leave-one-out (LOO) model 
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weights, with the largest weight attributed to the most supported model (Vehtari et al. 

2017). I also used Bayes Factors to compare the likelihood of a model correctly capturing 

data variation relative to another (alternative) model. Large values (>100) can be 

interpreted as extremely strong evidence supporting the tested model over the alternative 

model (Lee and Wagenmakers 2014). I selected the best-supported model from among 

the global and candidate models as the final models for analysis. 

In order to compare detection rates from AHDriFT and traditional methods, I 

considered one-week intervals as one AHDriFT “survey”.  I chose a one-week interval 

because VES and ACO surveys are usually conducted on weekly timeframes for Ohio 

Massasauga (Lipps Jr and Smeenk 2017). Further, AHDriFT is designed to be serviced 

infrequently rather than daily (Martin et al. 2017), and so it would be impractical to 

consider one day of camera trap data as one “survey”. I determined the AHDriFT 

detection rate from detections divided by person-hours of effort in the field and spent 

processing images specifically for Massasauga. I generated the detection rate of 

concurrent traditional surveys by totaling VES and ACO captures, and dividing by field 

person-hours. I generated detection rates for VES and ACO separately by dividing 

captures from each method by the same field person-hours (since the traditional surveys 

were conducted concurrently). I estimated detection rates from the Massasauga literature 

using the average or typically conducted survey effort reported. Effort and detection data 

were not consistently or uniformly reported and so my estimates from the published 

literature may contain additional error. 
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Results 

Traditional surveys 

For each of the three years, colleagues averaged 11 ± (5 SD) surveys per field 

(range, 5–27 surveys per field) and a mean = 17.79 ± (14.54 SD) total person-hours per 

field (range, 3.75–67.42 total person-hours per field). I obtained 0.46 Massasauga per 

person-hour when totaling VES and ACO captures from concurrent surveys (Table 5). 

The VES detections in each field averaged 2 ± (4 SD) Massasauga per year (range, 0–16 

Massasauga per year), with a mean of 0.11 Massasauga per person-hour. The ACO 

surveys in these fields were generally more effective than VES, accounting for 37.5–

100% of weekly detections. The ACO survey detections in each field averaged 5 ± (7 

SD) Massasauga per year (range, 0–28 Massasauga per year), with a mean of 0.28 

Massasauga per person-hour. Each field typically required a mean = 3 ± (3 SD) ACO 

surveys to obtain the first Massasauga detections within a year (range, 1–13 ACO 

surveys). Colleagues estimated a mean Massasauga population size = 36 ± (33 SD) 

individuals per field (range, 3–166 individuals per field). One field had only four 

detections over 3-y of traditional surveys (21.33 person-hours of survey effort). Three of 

these detections occurred in 2015 by VES and one occurred in 2017 by ACO survey.  

AHDriFT surveys 

Arrays imaged Massasauga in 12 of the 13 fields (92%) and obtained 72 

Massasauga detections, including eight neonates (Figure 3B–E). The field that failed to 

image a Massasauga only had four prior traditional survey detections. Individual arrays 

obtained a mean = 6 ± (5 SD) detections (range, 1–20 detections). Ten arrays obtained 
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less than 10 detections each, with two of those arrays each obtaining a single Massasauga 

detection. All detections occurred between 1000 and 1900 hours, peaking at 1600 hours.  

After summing array deployment, servicing, and image processing time, I approximated 

150 person-hours of total effort (11.5 person-hours per array). Thus, I estimated an 

average detection rate of 0.48 Massasauga detections per person-hour using AHDriFT 

(Table 5).   

Spatial analysis 

I reduced the spatial global models to an interaction between population size 

estimate and field area (Table 12), which had a negative relationship but a relatively 

small effect (20.9% of posterior distribution in ROPE; Table 6). Total detection counts 

increased with larger population size estimates (Figure 4), especially in smaller fields 

(<5 ha) relative to medium-sized fields (5–15 ha), and large fields (>15 ha). However, the 

estimates had large and overlapping 95% credible intervals (CI). The binomial model 

predicted Massasauga detections in a mean = 5 weeks (CI = 2–10 weeks) out of a 30-

week study period in each field. This equates to a mean of 20% (CI = 5–33%) weekly 

chance of imaging a Massasauga in a given field based on non-temporal variables. 

Temporal analysis 

Arrays detected Massasauga in 57 of 390 (14.6%) possible field weeks (13 fields 

sampled for 30 weeks each; Table 5). Four field weeks with detections occurred in 

spring, 18 field weeks in summer, and 35 field weeks in fall. I detected Massasauga in no 

more than two and three different fields per week in spring and summer, respectively. 

Fall had a mean number of fields per week with Massasauga detections = 4 ± (1 SD) 
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fields (range, 2–8 fields), and a weekly detection probability per field as high as 0.40 

(Figure 5). Mean detection probability of a means-parameterized model that isolated 

season was 0.28 (CI = 0.00–0.62) in fall, 0.13 (CI = 0.00–0.29) in summer, and 0.15 (CI 

= 0.00–0.44) in spring. Arrays detected Massasauga on 65 of 2,730 (2.4%) possible field 

days (13 fields sampled for 210 days each).   

The best-supported temporal model included an interaction of season and weekly 

average temperature (Table 12). I only imaged Massasauga in weeks with average 

temperatures ranging from 10–26° C (Figure 5). The data suggest that detection 

probability in spring may be positively correlated with weekly average temperature, 

while in summer it may be negatively correlated. However, the credible intervals for 

these interaction parameters did somewhat overlap zero (Table 5). Temperature did not 

produce a meaningful effect in fall. Overall, weekly average temperature may influence 

weekly detection probability in each field by up to 0.10, albeit with notable uncertainty in 

the estimates. 

Discussion 

The Adapted-Hunt Drift Fence Technique shows promising results as a new 

Massasauga survey method. Arrays imaged Massasauga at a similar, and often higher, 

detection rate compared to traditional survey methods while requiring less person-hours 

(Table 5). Shaffer et al. (2019) only surpassed AHDriFT weekly detection probabilities 

by VES when two surveyors actively searched for over 75-min. Crawford et al. (2020) 

had greater VES success, but effort influenced detection rates and surveyors walked tight 

transects only 2–3 m apart. Prior surveys in my fields typically observed only two 
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Massasauga in each field per year using VES. Comparatively, each AHDriFT array 

averaged six Massasauga detections. 

Bartman et al. (2016) had relatively high detection rates using ACO surveys 

(Table 5). However, the authors deployed ACO in very high densities (14 ACO per 0.06 

ha) in conjunction with a drift fence. Such deployment protocol is uncommon and 

standard Ohio Massasauga survey protocol calls for linear transects of only 1–2 tin 

sheets/ha (Lipps Jr and Smeenk 2017). In my fields, average yearly ACO (tin) survey 

detections per field were about equal to AHDriFT detections, but ACO surveys obtained 

lower detections per person-hour (Table 5). Further, surveyors typically needed at least 

three ACO surveys to first observe a Massasauga each year. The AHDriFT detections per 

field were also comparable to previous traditional ACO surveys (168 total tin sheets) in 

two of my fields in 2002 and 2003 (Douglas Wynn, Ohio Department of Natural 

Resources, unpubl. report, 2003). The first year of ACO surveys obtained 36 Massasauga 

detections and the second obtained 31 detections. In the same two fields, arrays obtained 

31 detections. 

Colleagues did yield more detections per year than AHDriFT when combining 

VES and ACO detections, with a roughly equal detection rate. However, VES and ACO 

survey efficacy is variable and both methods may not be applicable at all locations or 

times. Visual encounter surveys work best when vegetation is low (Olson and Warner 

2003), making VES most effective in routinely managed fields. Wet meadow vegetation 

is dense by mid-summer, even in well-maintained fields, which impairs visual detection 

and reduces VES efficacy in the second half of the active season (Olson and Warner 
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2003; Crawford et al. 2020). Meanwhile, AHDriFT was not influenced by vegetation 

density and removed VES observer bias (Dorcas and Willson 2009; Albergoni et al. 

2016) by placing arrays at each site’s geometric center. Therefore, AHDriFT may be 

more widely applicable than VES for detecting Massasauga.  

Artificial cover object surveys are also not always effective. For example, about 

30 tin sheets checked daily through the first half of the active season at Carlyle Lake, 

Illinois yielded only two Massasauga per year. Late summer checks detected more 

gestating females and neonates, but overall ACO appears ineffective at this site. Carlyle 

Lake has a robust Massasauga population and what causes the ACO inefficiency is 

unclear (Dr. Michael J. Dreslik, Illinois Natural History Survey, pers. comm., July 2020). 

I suspect in northern Ohio wet meadows that ACO may be less effective where there are 

numerous alternative cover objects (e.g., downed trees, rocks, dense brush) or where 

ACO becomes flooded. Conversely, AHDriFT only requires Massasauga to move and 

encounter the drift fences rather than to congregate under desired cover objects. Further, I 

observed that Massasauga and other species moved through buckets even if they 

contained standing water, suggesting that AHDriFT may be less affected by flooding than 

tin sheets. It is therefore possible that AHDriFT is applicable to a wider range of field 

habitat types than ACO surveys. I encourage future research that directly compares ACO 

and AHDriFT efficacy in different Massasauga habitats. Further, ACO surveys are 

influenced by the time of day, temperature, and sky cover during the survey (Joppa et al. 

2009). If ACO surveys cannot be conducted during optimal conditions then they may be 
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ineffective. Researchers and managers surveying many sites or with limited resources can 

instead deploy continuously active AHDriFT arrays. 

Overall, I found that AHDriFT can compare to or exceed the detection efficacy of 

traditional Massasauga survey methods. The major strengths of AHDriFT are that it is 

widely applicable and can obtain detections using minimal field effort. However, 

AHDriFT was ineffective for identifying individuals and I recommend traditional 

methods for this purpose. Combining Passive Integrated Transponders (PIT tags; 

Gibbons and Andrews 2004) with arrays remains a potential avenue of research. 

However, PIT tags are usually placed towards the tail of snakes, so individuals that do 

not fully enter the buckets may not trigger the PIT reader. In its current design, AHDriFT 

may be best applied for Massasauga presence-absence surveys or occupancy modeling in 

numerous fields or in fields where traditional methods are ineffective. Alternatively, 

AHDriFT can be combined with traditional methods to capture heterogeneity in detection 

and increase overall encounter success.   

Additionally, AHDriFT could be used with N-mixture models or incorporated 

into integrated population models to make abundance estimates or track population 

dynamics. However, the total number of snakes observed at sites was typically quite low. 

As such, counts will need to be summarized over a period of time, requiring some 

subjective decisions about what constitutes a closed survey period. Researchers may 

consider deploying multiple arrays per field to increase detections, but AHDriFT costs 

may be limiting (Amber et al. 2020). The cost-efficiency of this strategy is being assessed 

as part of on-going research. I also note that AHDriFT captures a wide diversity of small 
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mammal species (Martin et al. 2017; Amber et al. 2020), including Massasauga prey such 

as Meadow Voles (Microtus pennsylvanicus; Keenlyne and Beer 1973). Thus, AHDriFT 

may potentially be used for concurrent Massasauga prey abundance surveys and I 

encourage research that examines this application. 

Regardless of the survey objectives, researchers that deploy AHDriFT are likely 

aiming to maximize detection rates. I provide several recommendations to optimize 

AHDriFT deployment for Massasauga surveys. First, I serviced arrays every two-weeks, 

but likely could have halved or quartered my field visits. Second, most of the array 

detections occurred in the fall when detection probability was highest. The fall is when 

Massasauga breed, give birth, and prepare for overwintering (Ernst and Ernst 2011; 

Gibbons 2017). Heightened Massasauga activity in late July through September 

(DeGregorio et al. 2018) increases their likelihood of encountering the AHDriFT drift 

fences. However, I note that the detection probability estimates across seasons have 

substantial uncertainty. As such, researchers can likely activate cameras in late summer 

through the fall when Massasauga are most likely to be imaged, but more research is 

needed to examine the detection success of a shortened survey season (refer to Chapter 

3). 

Lastly, surveyors can refine AHDriFT deployment by considering temperature. 

Arrays imaged Massasauga only when weekly average temperatures were between 10–

26° C (Figure 5). Temperature has been previously shown to affect Massasauga 

detection (Shaffer et al. 2019; Crawford et al. 2020), likely because ground temperature 

influences Massasauga movement activity (Moore and Gillingham 2006). Northern 
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Massasauga populations have the most movement activity when daily temperatures are 

30–34° C and show constrained movement below 20° C (Harvey and Weatherhead 

2010). Likewise, AHDriFT detections increased in the spring with higher average 

temperatures (Figure 5) that are more suitable to Massasauga movement. Meanwhile, 

high temperatures during summer exceeded 34° C and potentially reduced Massasauga 

movements and AHDriFT detections. Overall, researchers can likely focus effort when 

temperatures are not at their seasonal extremes. For example, my results suggest that 

when spring temperatures are below 10° C, Massasauga are unlikely to be detected by 

AHDriFT in northern Ohio. Spring emergence of Massasauga is triggered when 

temperatures at or near the surface become warmer than the underground hibernacula 

(Smith 2009; Hileman 2016). In my fields the required underground-surface temperature 

inversion did not occur until early April. 

I identify some important limitations of this study. I focused on landscape-level 

differences between fields (e.g., topography, hydrology, Massasauga population size, 

overall field habitat and area) that may affect AHDriFT detections. However, 

Massasauga spatial ecology and movements may be more strongly influenced by 

microhabitats than macrohabitats (Harvey and Weatherhead 2010). I did not investigate 

how array placement within a field or how Massasauga microhabitat preferences (Moore 

and Gillingham 2006) affected AHDriFT detection as part of this study (refer to Chapter 

3). Further, large seasonal Massasauga movements occur when Massasauga move from 

lowland winter hibernacula in the spring to drier upland areas in the active season 

(Gibbons 2017; DeGregorio et al. 2018). Deploying AHDriFT along these movement 
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corridors or in preferred microhabitats may yield higher detection rates than arrays in 

field geometric centers. 

My statistical analyses are also limited due to low numbers of Massasauga 

detections at most arrays. Detection rates of Massasauga using AHDriFT is low, 

particularly in fields with very sparse Massasauga densities (Figure 4). Low detections 

per field may have led to ineffective accounting for variation in detections, resulting in 

large credible intervals (Table 6). I emphasize that the modelling results should be 

considered as preliminary. Still, I expect that the overall effects of temperature and 

season reflect real patterns (Figure 5). My results are in-line with the expected influence 

of season and temperature on Massasauga movement (Moore and Gillingham 2006; 

Harvey and Weatherhead 2010; Gibbons 2017; DeGregorio et al. 2018), Massasauga 

detection (Shaffer et al. 2019; Crawford et al. 2020), and drift fence efficiency for snakes 

(Greene 1997; Dorcas and Willson 2009). 

Conclusions  

Deploying a single AHDriFT array can reduce the field effort of conducting 

intensive traditional Massasauga surveys and obtain higher detection rates. Thus, 

surveyors that need to minimize field hours, have limited resources, or need to survey 

many locations can especially benefit from AHDriFT. I assert that AHDriFT can be of 

particular use for researchers and managers interested in determining presence-absence or 

estimating occupancy. Surveyors can also deploy AHDriFT in conjunction with 

traditional methods to increase Massasauga detections with minimal additional field 

effort. For example, low-density fields where a single AHDriFT array failed to image 
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Massasauga can then be specifically targeted using traditional methods. Another option is 

to conduct VES in the spring while vegetation is low (Olson and Warner 2003), and then 

AHDriFT in summer and fall when Massasauga are more likely to be imaged (Figure 5).  

Combining AHDriFT and traditional methods may be particularly beneficial since use of 

multiple survey methods is suggested to strengthen Massasauga monitoring (Bartman et 

al. 2016). I conclude that AHDriFT is an effective new tool for widespread, non-invasive, 

and time-efficient surveying of the Federally threatened Massasauga. 
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Tables 

Table 5. Comparison of sample detection rates of Massasauga using AHDriFT, visual encounter surveys (VES), and artificial cover 

object (ACO) surveys. Detection rate metrics from the literature are from published data and only represent the estimated average or 

typically conducted survey effort reported. 

Method Proportion of surveys 

with detections 

Effort per survey 

(person-hours) 

Snakes per  

person-hour 

Detection  

probability 

Reference 

AHDriFT 14.6% 0.38 0.48 0.00–0.40 This study 

VES 20.2% 0.65 0.11 0.18 This study – prior surveys 

 20.4% 2.13 0.16 0.08 Shaffer et al. 2019 

 44.2% 2.00 0.22 0.40 Crawford et al. 2020 

 NA 4.07 0.41 NA Bartman et al. 2016 

 NA NA 0.41 NA Dreslik et al. 2011 

ACO 45.7% 0.65 0.28 0.45 This study – prior surveys 

 NA NA  0.58 NA Bartman et al. 2016 
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Table 6. Parameter estimates of the final generalized linear mixed effect models to assess 

Massasauga detections using AHDriFT. Estimates presented with 95% credible intervals 

(CI), probability of direction (pd) which indicates the probability that a parameter 

estimate has the effect (±) indicated by the mean of the posterior, and percentage of the 

parameter’s posterior distribution that falls within the Region of Practical Equivalence (% 

ROPE) using 95% of the distribution. 

Parameter Estimate CI low CI high pd % ROPE 

Spatial Binomial  

(number of weeks with a detection) 

     

Population 0.963 -5.13 7.19 0.663 4.8 

Field Size 0.088 -2.04 2.05 0.530 13.2 

Population * Field Size -0.409 -1.48 0.40 0.845 20.9 

Spatial Poisson  

(total counts) 

     

Population 0.798 -4.84 7.59 0.647 3.6 

Field Size 0.656 -1.37 2.38 0.718 5.4 

Population * Field Size -0.633 -1.72 0.10 0.956 4.4 

Temporal Bernoulli 

(weekly detection probability) 

   

  

Average Temperature 0.265 -0.99 1.44 0.637 19.7 

Spring Season -3.414 -6.76 0.66 0.921 1.5 
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Table 6 Continued      

Parameter Estimate CI low CI high pd % ROPE 

Summer Season -1.629 -5.20 2.09 0.808 3.9 

Fall Season -0.684 -4.10 3.10 0.672 7.6 

Temperature * Spring 2.351 -0.22 5.24 0.942 3.4 

Temperature * Summer -0.748 -2.11 0.79 0.788 11.2 

Temperature * Fall -0.920 -4.71 4.04 0.695 6.3 
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Figures 

 
 

Figure 3. Sample Massasauga images taken using AHDriFT: (A) Y-shaped AHDriFT 

array with inverted bucket units containing passive infrared trail camera traps; (B) adult 

with the typical patterning; (C) melanistic adult; (D) juvenile or young adult; (E) neonate. 
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Figure 4. Relationship of Massasauga population size estimate (number of individuals) 

and field size on predicted total detection counts using AHDriFT. Three general 

categorizations of field sizes as small (< 5 ha), medium (5–15 ha), and large (> 15 ha). I 

omitted 95% credible intervals (CI) to more clearly display general patterns but report 

them here for field sizes of: small (CI = 0–162); medium (CI = 0–88); and large (CI = 0–

44). 
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Figure 5. Influence of weekly average temperature on weekly detection probability per 

AHDriFT array of Massasauga (EMR) across seasons. I defined spring as 10 March–19 

May 2019, summer as 20 May–28 July 2019, and fall as 29 July–06 October 2019. 

Vertical dashed lines indicate the temperature range of Massasauga detections across all 

seasons combined. Shaded regions indicate 95% credible intervals around mean 

estimated responses. 
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Chapter 3. Optimal Deployment and Concurrent Comparison of Tin Artificial 

Cover and AHDriFT Camera Traps to Survey for Sistrurus catenatus 

Abstract 

The Eastern Massasauga Rattlesnake (Sistrurus catenatus) is Federally threatened 

and Ohio endangered. Artificial cover (corrugated tin sheets) surveys are the primary 

method used for Ohio Massasauga, but require intensive field effort. The Adapted-Hunt 

Drift Fence Technique (AHDriFT) is a camera trap method that is effective for detecting 

Massasauga. These two methods have not been directly compared. I evaluated 20 

concurrent weekly surveys for Massasauga using AHDriFT and tin sheets in Wyandot 

County, Ohio. I evaluated detection rates (detection probability and catch-per-unit-effort) 

and cost-efficiency, and assessed spatial and temporal detection covariates. I generated 

error rates from previously collected AHDriFT data to evaluate if my results are 

generalizable. Arrays obtained 123 Massasauga detections during concurrent surveys, 2 – 

4 times that of tin, and exceeded tin catch-per-person-hour by 2.6 – 6 times. The tin 

surveys achieved a maximum detection probability per survey of 0.5, which was matched 

using 2 – 4 arrays. Tin was more cost-effective if including initial equipment purchases, 

while arrays were more cost-effective afterwards. Arrays obtained 92% of captures from 

May – October, with 74 – 81% of captures after mid-July. Arrays required five field 

visits for 16 weeks of camera trapping to achieve a confidence of absence >90%. Optimal 
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array placement is in dense vegetation away from predator perch trees and field edges. 

Overall, AHDriFT was more effective than tin surveys at detecting Massasauga in these 

sites. However, these data may not be generalizable and further research is needed in 

locations with less dense populations. I conclude with preliminary recommendations for 

an AHDriFT protocol for Massasauga presence-absence surveys in Ohio, pending on-

going research. 

Introduction 

The Eastern Massasauga Rattlesnake (Sistrurus catenatus) is a small (<70 cm) 

stout-bodied rattlesnake with populations centered around the North American Great 

Lakes region. They are considered endangered across nearly all of their historic range 

(Syzmanski et al. 2016) and are Federally threatened (USFWS 2016). The species 

requires open-canopy early-successional mixed-herbaceous grassland, meadow, or prairie 

that encompasses or is adjacent to wetlands that host burrowing crayfish (Moore and 

Gillingham 2006; Gibbons 2017; Lipps Jr and Smeenk 2017). Narrow habitat 

requirements make Massasauga vulnerable to habitat loss through vegetative succession, 

a primary driver of population declines (Szymanski et al. 2016). Today, extant 

populations are generally small, isolated, and located on protected properties (Lipps Jr 

and Smeenk 2017). 

In Ohio, where the species is state endangered, currently accepted survey 

protocols predominantly rely on artificial cover object surveys (corrugated tin sheets; 

Lipps Jr and Smeenk 2017). Tin sheets create attractive refugia for thermoregulation and 

congregate snakes that are otherwise difficult to find (McDiarmid et al. 2012). The tin 
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sheets are deployed in linear transects or grids, and then carefully flipped during each 

survey by permitted specialists who are experienced with venomous snake research. 

However, whether snakes are observed under cover objects is influenced by survey 

timing and environmental conditions (Joppa et al. 2009), and tin may not be suitable in 

all Massasauga habitats (Amber et al. Accepted). 

Although effective for detecting Massasauga over a study season (Lipps Jr and 

Smeenk 2017), tin surveys require intensive field effort since individual tin surveys have 

low detection rates (McDiarmid et al. 2012). Current protocols in Ohio require about 25 

weekly tin surveys before considering the species as absent from a study location (Lipps 

Jr and Smeenk 2017). Given the expense of venomous snake-specialist researcher or 

consultant hours, the required field visits can incur high survey costs. Low detection per 

survey and high survey costs can complicate environmental reviews of development 

project impacts to the Massasauga (Lipps Jr and Smeenk 2017). 

The Adapted-Hunt Drift Fence Technique (AHDriFT) is a drift fence and camera 

trap system designed to image small mammals and ectotherms (Martin et al. 2017). Prior 

research has found that AHDriFT is highly sensitive and operates efficiently in 

Massasauga habitat in Ohio and captures high-quality images (Amber et al. 2020). Amber 

et al. (Accepted) further demonstrated that AHDriFT is an effective new survey tool for 

Massasauga and that it compared favorably to previously conducted traditional surveys. 

However, AHDriFT has not been directly compared to tin surveys by deploying and 

assessing the methods concurrently. It remains unresolved which method is the more 

effective technique for Massasauga surveys in terms of detection rates and cost-
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efficiency. Further, there is ambiguity of how to best deploy AHDriFT to optimize 

Massasauga detection (Amber et al. Accepted), and a recommended deployment protocol 

for Massasauga surveys has not yet been established. 

 The objectives of this study are to: (1) compare the detection rates (detection 

probability and catch-per-unit-effort) and cost-efficiency of concurrent AHDriFT and tin 

surveys for Massasauga in northern Ohio; (2) evaluate how within-field spatial covariates 

influence Massasauga detection for both methods; (3) determine the amount and timing 

of camera trapping effort required using AHDriFT to achieve a desired confidence of 

absence; and (4) provide protocol recommendations for AHDriFT deployment density 

and survey length for Massasauga presence-absence surveys. 

Methods 

Massasauga surveys 

I chose two wet meadow fields in Wyandot County, Ohio, that are separated by 

approximately 500-m of developed or agricultural matrix and known to host Massasauga 

populations. I deployed 15 omni-directional Y-shaped AHDriFT arrays (Figure 1) from 

16 March – 03 October, 2020. Detailed construction and deployment instructions are 

described elsewhere (Amber et al. 2020) and are also available as an open-source online 

publication (https://doi.org/10.6084/m9.figshare.12685763.v1). Colleagues deployed 181 

corrugated tin sheets (2.4 x 0.6-m) from 17 May – 07 October, 2020 (Douglas Wynn, 

unpubl. data). University research limitations in response to the COVID-19 pandemic 

prevented earlier tin surveys. Tin density was set between 1.5 – 2 tin/ha, in accordance 

with accepted Ohio protocols for Massasauga (Lipps Jr and Smeenk 2017). Although 

https://doi.org/10.6084/m9.figshare.12685763.v1
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colleagues conducted a total of 41 tin surveys (multiple surveys in some weeks), I 

selected only the first survey of the week to include in method comparison analyses. 

Therefore, I constrained the comparison analyses to 20 equal weeks of concurrent 

surveys for both methods from 14 May – 07 October, 2020. To compare the two 

methods, I defined a “survey” as one week of camera trapping or one weekly check of all 

available tin. Since no single definition of a survey can perfectly compare methods that 

operate on different time schedules (i.e., camera traps are continuous and checked 

infrequently, while tin surveys are single time points), we recognize that our framework 

is a subjective attempt to compare these methods using a practical and equitable survey 

definition. 

Typical Massasauga sites in northern and northeast Ohio range from 0.39 – 8.82 

ha, with a mean Massasauga density of 3.40 snakes/ha (range of 0.60 – 10.80 snakes/ha; 

Lipps Jr and Smeenk 2017). I deployed six arrays and 1.5 tin/ha in a 27-ha field that is 

adjacent to a known major overwintering area (Field A; Figure 9), which has a mean 

estimate of Massasauga density of 3.53 snakes/ha (Amber et al. Accepted). I deployed 

nine arrays and 2 tin/ha in a 72-ha field (Field B), which has a mean estimate of 

Massasauga density of 2.67 snakes/ha. The deployed arrays and tin encompassed 

approximately equivalent effective trap areas of available suitable habitat (~90%; based 

on a 350 m home range from prior telemetry and Ohio Department of Natural Resources 

Massasauga suitable habitat GIS layer, Gregory J. Lipps Jr., unpubl. data; Lipps Jr and 

Smeenk 2017). 
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I processed camera trap images using the R package ‘camtrapR’ (Niedballa et al. 

2017, version 1.1; R Development Core Team 2019, version 3.6.1) and considered all 

three cameras at an array as one sampling unit. I defined AHDriFT detections as 

Massasauga images at a single array that were taken at least 60-min apart. The interval 

reduced the likelihood that Massasauga detections were inflated by one individual 

moving around an array within a short timeframe (Martin et al. 2017). I recorded the 

individual array and sheet of tin for each Massasauga capture. I also maintained detailed 

logs of project effort and expenses. I found that the number of captures was significantly 

different between the two fields (Kolmogorov-Smirnov test, P < 0.01). Thus, I conducted 

separate statistical analyses for each field. 

Detection rate analysis 

I computed catch-per-unit-effort based on the field time spent checking tin and the 

field time spent servicing arrays plus the image processing time specifically for 

Massasauga. To equitably compare detection probabilities of tin and arrays, I generated 

detection accumulation curves for both methods. To accomplish this, I created weekly 

detection/non-detection (1/0) datasets from one to the maximum number of units 

deployed. For instance, I first assumed that only a single unit of tin was deployed, and fit 

a binomial model for the 20-week detection history for each tin. Next, I assumed two 

units of tin were used, and looked at all possible combinations of two units of tin. I 

repeated this process until all units of tin were included. I conducted the same process for 

AHDriFT arrays. When the number of tin or array combinations exceeded 5,000, I 
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randomly selected 5,000 combinations. I fit maximum likelihood binomial models to all 

generated datasets in R and calculated the mean and 95% confidence intervals.  

I then plotted the AHDriFT accumulation curves along with the mean detection 

probability estimate per survey for tin densities of 1 – 2 tin/ha. I determined the number 

of arrays that produced a survey detection probability equivalent to that of the maximum 

tin density in each field. I then computed the number of weeks needed for that number of 

arrays to be deployed to achieve a 95% and 99% confidence of Massasauga absence. 

Spatial and temporal models 

For each array and unit of tin, I recorded the dominant land cover as either 

herbaceous or mixed vegetation, the distance to the nearest predator perch tree, and the 

distance to the nearest known or suspected hibernacula area. I delineated hibernacula 

areas from prior telemetry and observations of muddy snakes around the known spring 

emergence dates at these sites (Gregory J. Lipps Jr., pers. comm.). For each array, I also 

quantified vegetation density using a Digital Imagery Vegetation Analysis (DIVA; 

Jorgensen et al. 2013) in mid-July, 2020. I imaged the vegetation against a 0.6 x 1-m 

white poster board placed approximately 3 m from the ends of each array arm. I set the 

camera at about 0.5 m above the ground to image ground-level vegetation. I processed 

images in Adobe Photoshop (version CC-2018) by converting the vegetation to black 

pixels and recording the proportion of black pixels in the image (Jorgensen et al. 2013). I 

then averaged the black pixel proportions of the images from each array arm to obtain a 

single DIVA score per array. Higher DIVA scores represent taller and denser vegetation 

than lower scores.   
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I fit generalized linear mixed effects models (glmm) to test the effects of spatial 

covariates and week-of-year on total captures per unit of tin or array. Because these 

models evaluate AHDriFT and tin surveys separately, I used all available data for these 

analyses (i.e., array data starting in March, and tin data of all 41 surveys). I built glmms 

using a Bayesian framework using the R package ‘brms’ (Bürkner 2018, version 2.9). I 

modelled each surveyed field as a random intercept. I scaled and centered all continuous 

predictors to have a mean of zero and standard deviation of one. I manually set all models 

with normally-distributed priors with a mean of zero and standard deviation of ten.  

I visually inspected model chains for mixing and used Gelman-Rubin statistics to 

confirm convergence (Rhat < 1.1; Cowles and Carlin 1996). I then assessed model fit 

with posterior predictive checks (Bürkner 2018). I reduced our global models and 

selected our best-supported final models (Table 13) using the R packages ‘bayestestR’ 

(Makowski et al. 2019, version 0.3). Model support, and subsequently selection was 

based on Watanabe-Akaike information criterion (WAIC) and leave-one-out (LOO) 

model weights, with the largest weight attributed to the most supported model (Vehtari et 

al. 2017). I retained variables whose posterior distributions did not or only marginally 

included zero. I also checked if the variable had less than 11% of its posterior distribution 

within the Region of Practical Equivalence (Piironen and Vehtari 2017; ROPE). A small 

proportion of the distribution within ROPE suggests that the variable likely had a 

meaningful effect on the response. 

Array density and deployment length analysis 
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 I synthesized Massasauga capture data from a prior study in 2019, in which I 

deployed one AHDriFT array in the centers of 10 fields in northern and northeastern 

Ohio where colleagues have previously obtained at least one Massasauga detection 

(Amber et al. Accepted; refer to Chapter 2). Using these data, I conducted bootstrap 

simulation analysis to determine the potential error rate (i.e., failing to detect a 

Massasauga when it was present) at three confidence thresholds when 1–6 arrays are 

deployed for three different durations. The steps of this analysis are as follows. First, I fit 

an intercept-only binomial glm to the 20-week detection history for each of 10 sites. I 

then calculated 1,000 detection probabilities for each site by sampling from a normal 

distribution with a mean and standard deviation equal to the estimated intercept and 

standard error from the fitted model. I then generated 20-week detection histories for the 

each of the 1,000 detection probabilities, which are equivalent to detection history 

generated by a single AHDriFT camera array. I then fit binomial models to each 

detection history to simulate deployment of a single array, or 1,000 random combinations 

of 2–6 detection histories to simulate deployment of multiple arrays. This resulted in 

60,000 detection probability estimates (1,000 estimates for 1–6 arrays deployed * 10 

sites). To generalize results, I pooled all detection estimates across sites for each array 

number combination. Then, given each estimated detection probability, I determined the 

number of weeks arrays would need to be deployed to achieve 90, 95, and 99% 

confidence as: 

𝑤𝑒𝑒𝑘𝑠 =
log(−𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 + 1)

log(1 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛)
 . 
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Finally, I determined the proportion of surveys that would fail to detect a 

Massasauga, given they were present, using the empirical cumulative distribution 

function. I assessed survey lengths of 12, 16, and 20 weeks. Because I pooled all sites and 

equally weighted sites in this simulation, the estimated error rates are independent of 

patch size or population density and should be a general estimate for most Massasauga 

populations in Ohio. 

 

Results 

Method detection rates and cost-efficiency 

Over the 20 weeks of concurrent surveys, 14 arrays (93%) cumulatively obtained 

123 Massasauga detections, with a mean of nine per array (Table 7). Tin surveys 

obtained 34 detections from 33 units of tin (18%), with a mean of 0.2 detections per unit 

of tin. Array detection rate averaged 5.6 snakes per hour of effort, while tin averaged 1.2 

snakes per hour of effort. Both methods, but particularly arrays, obtained more captures 

and greater detection rates in Field A compared to Field B. Arrays obtained about 4.7 

times more detections and six times greater catch per unit effort than tin in Field A. 

Arrays obtained about two times more detections and 2.6 times greater catch per unit 

effort than tin in Field B. Arrays also recorded greater captures of other species that are 

traditionally difficult to observe or are species of interest in Ohio (Table 15). 

In Field A, all six arrays combined achieved a maximum detection probability per 

survey of 0.9 (Figure 6A). Tin surveys achieved a maximum detection probability per 

survey of 0.5, equivalent to deploying two arrays (0.074 arrays/ha). Deploying two arrays 
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in Field A would obtain a 95% confidence of Massasauga absence after a mean of three 

weeks of camera trapping (95% confidence interval = 2 – 6 weeks), and 99% confidence 

after a mean of five weeks (95% confidence interval = 3 – 9 weeks). In Field B, all nine 

arrays combined achieved a maximum detection probability per survey of 0.6 (Figure 

6B). Tin surveys achieved a maximum detection probability per survey of 0.43, 

equivalent to deploying four arrays (0.056 arrays/ha). Four arrays in Field B would obtain 

a 95% confidence of Massasauga absence after a mean of five weeks of camera trapping 

(95% confidence interval = 3 – 11 weeks), and 99% confidence after a mean of eight 

weeks (95% confidence interval = 5 – 17 weeks). Overall, arrays matched the detection 

probability of all deployed tin using only about 1 array/15-ha.  

The dollar cost (USD) of 20 tin surveys was $5,469, equating to $160.85 per 

snake detection (Table 8). Deploying 15 arrays for 20 weeks of surveys cost $9,496, 

equating to $211.02 per snake detection. However, 92% of the AHDriFT costs were the 

initial equipment purchases, particularly the camera materials (86% of total cost), which 

can be used for multiple seasons (detailed equipment cost breakdown provided in Amber 

et al. 2020; refer to Chapter 1). After removing equipment purchases, the tin surveys 

cost $72.62 per snake detection while arrays cost $16.58 per snake detection. These 

figures assume a consultant rate of only $15/hour for the purposes of comparing the 

methods equably, and likely do not reflect the true costs of a contracted survey or 

differences in specialist and generalist biologist consultant rates. 

Optimal method deployment 
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 Over the full period of AHDriFT deployment, arrays obtained 134 Massasauga 

detections with 97 from Field A and 37 from Field B. Across all 41 tin surveys, tin 

obtained 52 Massasauga detections with 31 from Field A and 21 from Field B. I provide 

as supplemental material the global and best-supported spatial and temporal models 

(Table 13), and details of final parameter results (Table 14). Here, I report parameter 

estimates and 95% credible intervals (CI). Tin survey captures were not significantly 

influenced by any of the spatial covariates. For arrays, vegetation density (0.51, CI = -

0.04 – 1.12; Figure 7A) and distance to a predator perch tree (0.51, CI = -0.12 – 1.11; 

Figure 7B) were the best-supported spatial covariates for predicting captures. 

Tin surveys in Field A increased captures with increasing week-of-year (0.44, CI 

= -0.12 – 1.01), with 63% of captures after 15 July, 2020. However, tin in Field B did not 

produce this effect (-0.03, CI = -0.62 – 0.55; 29% in ROPE), with 53% of captures after 

15 July. Arrays obtained 92% of total captures from May – October, with captures after 

15 July accounting for 74% of captures in Field A and 81% of captures in Field B. Arrays 

in Field A obtained 40% of its captures from 20 August – 09 September. The week-of-

year model parameter had a positive effect on array captures in both Field A (0.10, CI = 

0.06 – 0.15; Figure 8A) and Field B (0.08, CI = 0.02 – 0.13; Figure 8B). Still, we 

caution that the week-of-year parameter for arrays exceeded 11% ROPE in Field A 

(12.3%) and Field B (23.7%; Table 14).  

 Previously deployed arrays in 2019 in sites with smaller Massasauga populations 

achieved substantially lower detection probabilities per survey of only 0.1 – 0.4 (Figure 

6C). At these sites, I found that a minimum of three arrays deployed for 16 weeks or four 
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arrays deployed for 12 weeks are necessary to achieve above 90% confidence of absence 

with less than 10% error rate (Table 9). 

Discussion 

The AHDriFT arrays outperformed concurrent tin surveys for Massasauga at 

these sites in terms of total captures, detection rates, and cost-efficiency after initial 

equipment investment (Table 10). I conducted double or nearly double array field visits 

than is strictly necessary for the method (Amber et al. 2020), so the array catch-per-

person-hour could have been even higher (Table 7). However, I conducted these surveys 

in sites with Massasauga populations that are atypically high for Ohio. Massasauga 

population size positively correlates with captures using AHDriFT (Amber et al. 

Accepted). Further, the synthesis of prior AHDriFT surveys demonstrated that small 

population sites need to deploy arrays for longer timeframes and in greater densities to 

achieve an equivalent confidence of absence and low error rate (Table 9). As such, 

although these data suggest that deploying 1 array/15-ha for an eight-week survey period 

is sufficient, I suspect that this protocol is not generalizable.  

Therefore, I recommend a conservative approach to AHDriFT deployment in its 

current form. I encourage researchers to deploy a minimum of three arrays per field, 

independent of field area, and then an additional 1 array/10-ha (e.g., a 20-ha field would 

have five arrays). However, due to the species decline, habitat fragmentation, and that 

most fields able to be purchased, managed, or surveyed for conservation are small (<3 ha; 

Lipps Jr. and Smeenk 2017), fields that host extant Massasauga will likely only require 

three arrays. I suggest at least 16 weeks of camera trapping to ensure the greatest 
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confidence in assessment of absence. Although arrays should be built in early spring prior 

to Massasauga emergence (Amber et al. Accepted), I recommend activating cameras 

from June through September to minimize image processing effort (Figure 8). This 

period corresponds to when Massasauga movement activity is greatest (DeGregorio et al. 

2018), and thus when they are most likely to be imaged. On-going research is examining 

AHDriFT deployment protocols across numerous sites in Ohio that are more 

representative of typical Massasauga population sizes in the state.  

 Researchers following my recommended array deployment density and survey 

length may face the obstacle of the high initial equipment costs per array (Amber et al. 

2020). Still, AHDriFT has the potential to ultimately lower the costs of environmental 

reviews for Massasauga by requiring far fewer field person-hours than traditional 

methods (Martin et al. 2017; Table 8). Arrays require about 15-min of servicing every 4 

– 8 weeks (Amber et al. 2020), so deploying additional arrays does not substantially 

increase field effort. Further, researchers only need to conduct about five field visits for 

16 weeks of AHDriFT surveys. Meanwhile, tin surveys require about 25 weekly visits in 

Ohio, which may incur a significant cost of researcher hours. Camera traps are also non-

invasive, which is less stressful on the snakes and removes the obstacles of acquiring 

handling permits and hiring or training staff proficient in venomous snake handling. 

Therefore, AHDriFT is a technique that can be applied by any wildlife biologist, 

removing the potentially significant expense of contracting specialist consultants.  

In sum, investing in AHDriFT is best when cameras will be utilized for multiple 

seasons or projects. I encourage researchers conducting tin surveys for Massasauga to 
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evaluate their field effort costs to determine if AHDriFT will be more cost-efficient for 

their study designs. Further, deployment of two-camera arrays (Martin et al. 2017) rather 

than my three camera arrays could potentially reduce both equipment costs and image 

processing effort. On-going research is evaluating if there is a meaningful difference in 

detection rates between linear and omni-directional designs. 

 I did not discern spatial or temporal covariates that meaningfully influenced tin 

detections for Massasauga. I suspect that this is in part because tin survey efficacy is 

primarily influenced by the environmental conditions on the survey date (Joppa et al. 

2009). Further, the dense and linear deployment of the tin units may not have captured 

enough spatial heterogeneity between tin units to discern potential spatial effects on 

detection (Figure 9). I therefore strongly caution against an interpretation that 

Massasauga captures are not affected by tin placement, and I encourage future research 

using fine-scale spatial parameters and different tin placement configurations. 

I did find that AHDriFT detection rates for Massasauga were greatest when arrays 

were set in dense, herbaceous vegetation, away from field edges and predator perch trees 

(Figure 7). Further, Field A obtained far greater captures and detection rates than Field B 

(Table 7; Figure 6). These observations are likely explained by the location of Field A 

immediately adjacent to a major overwintering area for the species. Massasauga make 

seasonal movements from lowland hibernacula in the spring to drier upland areas during 

the active season, and back again in the fall (Gibbons 2017; DeGregorio et al. 2018). As 

AHDriFT relies on animals encountering the drift fences, the method is most efficient 

when species are moving more frequently and over larger distances (Amber et al. 2020). 
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Therefore, placing arrays between suspected hibernacula and active season habitats may 

increase detections by intercepting snakes during their seasonal movements.  

However, the covariate of array distance to hibernacula did not yield a significant 

effect on captures. I suspect that this may be because I roughly estimated most 

hibernacula areas from prior observations. Further, prior telemetry reveals that some 

individuals active in Field B actually overwinter next to Field A (Gregory J. Lipps Jr., 

pers. comm.), which could have confounded the model term. I encourage further research 

of array placement using confident delineations of hibernacula areas across numerous, 

fully independent populations. 

I also recognize that the spatial metrics may have been too coarse to best evaluate 

differences in Massasauga movements (i.e., array captures) within each field. Massasauga 

movement activity is more strongly driven by microhabitat preferences than macrohabitat 

characteristics (Moore and Gillingham 2006; Harvey and Weatherhead 2010). Although I 

recorded spatial metrics at each array, the number of array sample points may not have 

been adequate to capture microhabitat heterogeneity in these fields. In addition to my 

recommended array placement protocol, I encourage researchers to consider Massasauga 

microhabitat preferences and movement activity predictors. 

 Overall, this study suggests that AHDriFT may be a more effective survey 

method for Massasauga than traditional tin surveys, as well as for numerous other species 

(Table 15; Martin et al. 2017; Amber et al. 2020; Amber et al. Accepted). By investing in 

cameras for multiple seasons of use, wildlife biologists can have a time and cost-efficient 

means to non-invasively conduct presence-absence Massasauga surveys. Additionally, 
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researchers can benefit from the larger sample sizes obtained using AHDriFT for use in 

more sophisticated analyses than presence-absence. Future research is warranted to 

further develop AHDriFT protocols that are more generalizable for typical Massasauga 

population sizes across their range. 
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Tables 

Table 7. Comparison of Massasauga captures and detection rates of concurrent AHDriFT 

and tin surveys. The field identifier is provided after the method type (in parentheses). 

Field A has a very high Massasauga density relative to most sites in Ohio and is adjacent 

to a major overwintering area. Field B has a moderately high Massasauga density relative 

to most sites in Ohio. I conducted double or nearly double array field visits than is strictly 

necessary for the method, denoted by an asterisk (*), which lowered our potential catch-

per-unit-effort (CPUE; captures/person-hours). I defined effort as the time spent in the 

field checking tin, and the time spent in the field servicing arrays plus image processing 

time specifically for Massasauga. 

Metric Tin (A) Arrays (A) Tin (B) Arrays (B) 

Total captures 19 91 15 32 

Density (units/ha) 1.5 0.22 2.0 0.13 

Effort hours (field visits) 13 (20) 10 (6*) 20 (20) 15 (6*) 

Estimated CPUE 1.5 9.1 0.8 2.1 
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Table 8. Approximate dollar cost (USD) expense comparison of tin and AHDriFT 

surveys for Massasauga. Twenty field visits for tin surveys of 181 tin units resulted in 34 

Massasauga captures. Only about five field visits of five arrays (three cameras per array) 

were needed to equate to the tin maximum detection probability, with a mean of nine 

Massasauga captures per array (five arrays would achieve an estimated 45 captures). I 

note that Ohio protocol typically calls for ~25 tin surveys, which would increase the 

travel and field expenses presented here. Estimates assume that each method employs a 

single researcher paid $15 (USD) per hour, who is based out of the Columbus, Ohio area 

(~120-mile roundtrip per field visit). Tin survey costs do not include miscellaneous 

equipment (i.e., snake tongs, bags) or time to process captured snakes. 

Expense Estimated cost – tin Estimated cost – AHDriFT  

Equipment  3,000 (181 tin sheets) 8,750 (five arrays) 

Mileage ($0.56/mile) 1,344 336 

Travel time pay 750 165  

Field time pay 375 95  

Image sorting pay NA 150 

Totals with equipment purchase   

Sum 5,469 9,496 

Cost per snake 160.85 211.02 

Totals without equipment purchase   

Sum 2,469 746 

Cost per snake 72.62 16.58 
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Table 9. Estimated error rate in failing to detect a Massasauga when present, independent of field size or population density, that a 

given number of AHDriFT arrays will have at a desired confidence of absence threshold (90%, 95%, or 99%) and when arrays are 

deployed for 12, 16, or 20 weeks. Bolded values in the table highlight when the error rate is ≤0.10. Values are generated from an 

analysis of 2019 AHDriFT data (Amber et al. Accepted; refer to Chapter 2). 
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Table 10. Summary comparison matrix of tin surveys and AHDriFT arrays for 

Massasauga. The AHDriFT detection probability lower range is using the array density 

needed to equate to the detection probability of 1.5 – 2 tin/ha, and the upper range is 

using all deployed arrays. 

Method aspect Tin AHDriFT 

Typical length of survey season 25 weeks 16 weeks 

Total field visits per season 25 5 

Expected captures per season 17 62 

USD per snake after equipment 72.62 16.58 

Snakes per person-hour 1.2 5.6 

Detection probability per survey ~0.50 0.50 – 0.90 

Researcher experience and skill Snake specialist Wildlife biologist 

USFWS and OH Div. of Wildlife 

endangered species permits 

Required None 
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Figures 

 

Figure 6. (A, B) Massasauga weekly detection probability accumulation curves of 

increasing AHDriFT array density. Dashed horizontal lines represent the minimum and 

maximum detection probability per survey of concurrent tin surveys within the unit 

density range acceptable in the current Ohio Massasauga protocol (1 – 2 tin/ha). Field A 

has a relaitvely high Massasauga density relative to most sites in Ohio and is adjacent to a 

major overwintering area. Field B has a moderately high Massasauga density relative to 

most sites in Ohio. (C) Massasauga weekly detection probability means and 95% 

confidence intervals using AHDriFT arrays in northern and northeastern Ohio sites from 

a prior study (Amber et al. Accepted; refer to Chapter 2). Shading represents relative 

categorizations of Massasauga population size estimates, including: large (black), 

moderate (hollow), and small (grey). 
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Figure 7. Influence on Massasauga weekly total captures per AHDriFT array of (A) 

vegetation density, with higher Digital Imagery Vegetation Analysis (DIVA) scores 

corresponding to denser wet meadow vegetation; and (B) the distance of the array from 

the nearest tree suitable for avian predators to perch on. 
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Figure 8. Influence of week of year on Massasauga weekly total captures per AHDriFT 

array. Field A has a higher Massasauga density relative to mean estimates for most sites 

in northern Ohio and is adjacent to a major overwintering area. Field B has a moderately 

high Massasauga density relative to most sites in northern Ohio. 
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Appendix A. AHDriFT Construction and Deployment Instructions 

Available as an open-source online publication: 

https://doi.org/10.6084/m9.figshare.12685763.v1 

https://doi.org/10.6084/m9.figshare.12685763.v1
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Appendix B. Chapter 2 Supplementary Material 

Table 11. The eight covariates used to determine the spatial variation of detection success of Massasauga using AHDriFT. Columns 

represent the field identification number, with field 1 in Huron County, fields 2 and 3 in Wyandot County, and fields 4–13 in 

Ashtabula County. Higher DIVA scores represent denser vegetation. Land cover is classified as either shrub/scrub (SS) or herbaceous 

cover (HC). 

Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 

Dist. to Forest edge (m) 30 442 274 71 113 8 70 38 27 25 28 60 7 

DIVA 10.5 16.8 35.5 18.7 29.6 81.5 45.3 32.1 37.6 67.5 80.3 75.8 88.2 

Elevation (m) 283 272 271 245 245 244 241 245 245 245 244 246 246 

Field edge area (%) 70 40 20 65 75 100 95 100 100 100 80 75 100 

Field total area (ha) 8.82 26.8 71.8 3.50 2.89 0.74 5.76 1.34 0.39 1.95 6.52 3.64 0.93 
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Table 11 Continued              

Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 

Hydrologic flow rate 

(m3/s) 

0.01 0.02 0.01 0.02 0.01 0 0.01 0 0.03 0.01 0.01 0.02 0.01 

Land cover HC HC HC SS HC SS SS HC HC SS SS HC SS 

Slope (°) 0.46 0.36 0.45 0.03 0.22 0.07 1.12 0.23 0.02 0.50 0.33 0.26 0.10 
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Table 12. Generalized linear mixed effect models to assess Massasauga detections using AHDriFT. Global models [A] and reduced 

final models [B] of the two spatial models and the temporal model. Watanabe-Akaike information criterion (WAIC) model weight, 

leave-one-out (LOO) model weight, and Bayes Factors (BF) as model selection criteria. Bayes Factors with large values (>100) 

represent extremely strong evidence for support of the reduced final model relative to the global model (BF = 1). 

Model WAIC LOO BF 

Spatial Binomial (number of weeks with a detection out of 30 possible weeks)    

[A] (weeks | 30) ~ population + hydrologic flow rate + land cover + field area + 

edge area + vegetation height and density + distance to forest + elevation2 + slope + 

(population | region) 

1.1 0.1 1 

[B] (weeks | 30) ~ population * field area + (population | region) 98.9 99.9 1.04^6 

Spatial Poisson (total observation counts)    

[A] counts ~ population + hydrologic flow rate + land cover + field area + edge 

area + vegetation height and density + distance to forest + elevation2 + slope + 

(population | region) 

2.4 0.1 1 

[B] counts ~ population * field area + (population | region) 97.6 99.9 1.51^7 
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Table 12 Continued    

Model WAIC LOO BF 

Temporal Bernoulli (weekly detection probability)    

[A] detection ~ average temperature + precipitation + relative humidity + season + 

(population | region / field) 

3.3 3.3 1 

[B] detection ~ average temperature * season + (population | region / field) 96.7 96.7 1.2^3 
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Appendix C. Chapter 3 Supplementary Material 

Table 13. Global and best-supported (bold) spatial and temporal models of captures per 

deployed unit of Massasauga using tin surveys and AHDriFT. I built models using 

Poisson and negative binomial (NB) distributions. Model selection analyses included 

Watanabe-Akaike information criterion (WAIC) and leave-one-out (LOO) model 

weights, with the largest weight attributed to the most supported model. 

Method Model Formula WAIC LOO 

AHDriFT Spatial NB: Captures ~ DIVA + Dis. Hibernacula + Dis. 

Perch + Land cover + (1 | Field) 

3.3 1.1 

  Poisson: Captures ~ DIVA + Dis. Hibernacula + 

Dis. Perch + Land cover + (1 | Field) 

1.5 0.1 

  NB: Captures ~ DIVA + Dis. Perch + (1 | Field) 60.5 71.8 

  NB: Captures ~ DIVA * Dis. Perch + (1 | Field) 34.7 27.0 

 Temporal NB: Captures ~ Week 99.8 99.8 

  Poisson: Captures ~ Week 0.2 0.2 

Tin Spatial NB: Captures ~ Dis. Hibernacula + Dis. Perch + 

Land cover + (1 | Field) 

99.6 99.7 

  Poisson: Captures ~ Dis. Hibernacula + Dis. Perch 

+ Land cover + (1 | Field) 

0.4 0.3 

 Temporal NB: Captures ~ Week 82.0 81.7 

  Poisson: Captures ~ Week 18.0 18.3 
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Table 14. Parameter results of the best-supported spatial and temporal models of captures per deployed unit of Massasauga using tin 

surveys and AHDriFT. Estimates presented with 95% credible intervals (CI), probability of direction (pd) which indicates the 

probability that a parameter estimate has the effect (+/-) indicated by the mean of the posterior, and percentage of the parameter’s 

posterior distribution that falls within the Region of Practical Equivalence (% ROPE) using 95% of the distribution. Field A has a very 

high Massasauga density relative to most sites in Ohio and is adjacent to a major overwintering area. Field B has a moderately high 

Massasauga density relative to most sites in Ohio. Higher Digital Imagery Vegetation Analysis (DIVA) scores represent denser 

vegetation. The Dis. Perch parameter refers to the array distance from the nearest predator perch tree. 

Method Model Parameter Field Estimate CI low CI high % Cross 0 Pd % ROPE 

AHDriFT Spatial Dis. Perch A + B 0.51 -0.04 1.12 3.1 0.95 5.17 

  DIVA A + B 0.51 -0.12 1.11 5.0 0.98 5.58 

 Temporal Week A 0.10 0.06 0.15 0.0 1.00 12.3 

   B 0.08 0.02 0.13 <1.0 1.00 23.7 

Tin Temporal Week A 0.44 -0.12 1.01 6.2 0.94 9.7 

   B -0.03 -0.62 0.55 45.6 0.54 29.0 
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Table 15. Notable captures of other species of interest, conservation concern using 

concurrent AHDriFT (Array) and 41 tin (Tin) surveys. Field identifier is denoted after the 

method type (in parentheses). Field A is a 27-ha field surrounded wetland. Field B is a 

72-ha field with a constructed pond adjacent to one end. Ohio state listed species have 

designations after their Latin name (E = Ohio Endangered; T = Ohio Threatened). 

Species Tin (A) Array (A) Tin (B) Array (B) 

Clonophis kirtlandiiT 3 0 14 13 

Opheodrys vernalisE 1 16 0 112 

Thamnophis radixE 0 22 39 268 
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Figure 9. Deployment locations AHDriFT (cameras) and tin sheets (purple points). (A) A 

27-ha field with a relatively dense Massasauga density and adjacent to a major 

overwintering area (Field A); and (B) a 72-ha field with a relatively sparse Massasauga 

density, although still denser than most sites in Ohio (Field B). 
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