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Abstract 

Geospatial techniques can used to extract fine-scale spatial data and examine temporal or 

spatial patterns to inform wildlife conservation planning and management. The overall goal of 

this thesis was to apply geospatial data and analyses to investigate two systems: conservation of 

Northern Bobwhite (Colinus virginianus) and harvest management of white-tailed deer 

(Odocoileus virginianus) in Ohio. Conclusions based on these broad-scale spatial analyses can 

be used by managers to devise plans which will be actionable and effective for achieving 

regional population goals.   

Northern bobwhite populations have been declining in Ohio for decades as a result of 

habitat loss and degradation caused by successional processes and changes in land use. 

Landscapes with high juxtaposition and interspersion of early successional, agricultural and 

forested vegetation are important to fulfill bobwhite resource requirements throughout all life 

stages. I applied land cover composition data to empirically derived distance to cover-type 

functions with the goal to predict probability of bobwhite occupancy throughout their current 

range in Ohio. I then compared final model accuracy to a correlational model of naïve landscape 

indices that similarly predicted occupancy from landscape metrics. Eighty five percent of the 

study area had a probability of occupancy < 0.25 during both breeding and nonbreeding seasons. 

This is indicative of inadequate habitat at a regional level, which has been suggested as the most 

appropriate level of management for this species. I assessed predictive accuracy of both models 

by predicting occupancy at points where Ohio Division of Wildlife (ODW) whistle count 

surveys were conducted and comparing predictions to presence or absence of bobwhites. Though 

both models were accurate to the commonly accepted threshold of 0.7, the distance to cover type 

model had higher area under the receiver operating curve (AUC) and kappa statistics. The 
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empirical distance to cover type model more accurately distinguished cases of bobwhite presence 

than the landscape metrics model. This finding could be used to support the value of highly 

detailed studies done at a fine scale for identifying patterns that can be extrapolated out to scales 

which are practical and useful for conservation management plans. However, since user accuracy 

was higher in the distance to cover type model and producer accuracy was higher in the 

landscape metrics model, context related to the model purpose may be needed to identify which 

is appropriate in a given situation.  

Management of white-tailed deer is an essential task for many wildlife management 

agencies due to their economic, recreational and social importance. Harvest management is a key 

tool for capturing the benefits and mitigating some detrimental social and ecological impacts of 

increasingly abundant white-tailed deer populations in Ohio and other midwestern states. I used 

state-wide survey data of deer hunting events during 2011-2014 to evaluate factors that 

influenced deer hunter distribution and probability of success within potential Ohio deer 

management units with the goal to provide important information for harvest managers at a 

regional scale. While final model results were complex, the strongest relationships captured in all 

models showed hunters were more likely to hunt but less likely to harvest deer on public 

compared to private lands. I found differences in final model covariates and the impact they had 

on hunter use and success between DMUs, which differ based on aspects of human social, 

geophysical and landcover composition. For example, while all DMUs had a clear trend for 

hunters to select for locations with a higher percentage of forest and public land, strength of 

selection for these predictors and which cover types were avoided differed by DMU and, 

therefore, by landscape context. These results suggest that overall, incentivizing landowners to 

allow hunting on their property and facilitating access for hunters may be the most effective 
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strategy to increase hunter success. Additionally, information concerning hunter behavior and 

outcomes in response to spatial variables can be used to devise region-specific management 

plans to achieve region-specific deer harvest and population goals. 
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Chapter 1. Introduction 

Geospatial science can be an effective tool in wildlife management decision making and 

environmental analysis. Low cost, varied scale, readily available datasets allow wildlife 

biologists to ask new questions, while geospatial tools provide a means to answer them. The field 

of wildlife management aims to achieve species population objectives by devising efficient 

management strategies, whether they address population control, maintenance, or growth 

objectives. Active research into social, economic, and ecological factors related to each species is 

essential to creating effective management plans. A broad scale understanding of habitat 

selection and population distribution patterns is imperative to integrate species ecology with 

human social influences. As human-wildlife interactions become even more frequent and 

pernicious, research will be indispensable if management plans are to achieve conservation goals 

or resolve human-wildlife conflicts. Geospatial techniques can be used to extract fine-scale 

spatial data and examine large-scale trends to inform practical wildlife planning and 

management. The overall goal of this thesis was to apply geospatial data and analyses to 

investigate two systems: conservation of early succession-dependent wildlife (e.g. Northern 

Bobwhite Colinus virginianus) and harvest management of White-tailed deer (Odocoileus 

virginianus) in Ohio. 

Northern bobwhite populations in Ohio have been declining for decades as a result of 

habitat loss and degradation caused by successional process and changes in land use (Klimstra 

1982, Brennan 1991, Spinola and Gates 2004, Rodewald et al. 2016). Landscapes formed by 

juxtaposition and interspersion of early successional, agricultural and forested edge are important 

to fulfill bobwhite resource requirements (Roseberry and Sudkamp 1998, Veech 2006). 
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Therefore, evaluating potential habitat for this species is not completely achieved by assessing 

quality or abundance of individual cover types. Instead, quality of potential focal management 

areas should also be evaluated from composition and configuration of landcover types. Being a 

ground-dwelling species makes bobwhite vulnerable to predation as they travel between 

resources. Predation has been suggested as an important suppressor of bobwhite population 

because land use changes which have depressed bobwhite populations may work to benefit 

populations of bobwhite predators (Rollins and Carroll 2001). Research concerning relationships 

between bobwhite use and distance to several cover types, such as lower use of cropland as 

distance to cover increases (Guthery and Bingham 1992) and lower use of grasslands as woody 

encroachment increases due to higher risk because of predator overlap (Atuo and O’Connell 

2017). Proximity to necessary resources is therefore an important consideration for habitat 

evaluation and more broadly for evaluating population trends.  

I modeled probability of Northern Bobwhite occupancy throughout their range in 

southern Ohio based on empirically-derived relationships between occupancy and landscape-

scale habitat configuration. I modeled probability of Northern Bobwhite occupancy throughout 

their range in southern Ohio based on relationships between occupancy and landscape-scale 

habitat configuration. This probability of occupancy model approach applies distance to cover-

type equations that predict probability of use at any one point as a function of interspersion with 

other important habitat types (Gates et al. 2017). Research on habitat requirements and cover 

type influences at a landscape-scale are needed to develop management plans for the species on 

the large-scale that is needed for range-wide population recovery. Identifying areas with requisite 

landscape structure can focus habitat management on those areas with greatest capacity to 

support bobwhite populations. Analyzing processes affecting probability of use can be applied to 
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create additional habitat space to promote occupancy by bobwhites. With this project, I aimed to 

utilize land cover data and past studies that predicted bobwhite occupancy probability on small 

scales to predict the same values over the entirety of their current range in Ohio. I also aimed to 

compare final model accuracy to one of similar goals yet differing methods to investigate the 

potential tradeoff between high effort data collection and model correctness for when creating 

landscape scale models using small-scale data. 

Management of White-tailed deer is an essential task for many wildlife management 

agencies due to their economic, recreational and social importance. Harvest management is a key 

tool for capturing the benefits and mitigating some detrimental social and ecological impacts of 

increasingly abundant white-tailed deer populations in Ohio and other midwestern states. 

Sustainable harvest of white-tailed deer can be an effective strategy for population control while 

also sustaining revenue streams and boosting public support for private and public conservation 

organizations. Access to acceptable hunting areas, harvest opportunity, and satisfaction with the 

overall hunting experience are crucial issues concerning the efficacy of harvest as a management 

tool. These issues become even more important as hunter participation has been decreasing for 

decades, which jeopardizes citizen participation support for wildlife conservation (Robinson and 

Ridenour 2012, Winkler and Warnke 2013). Evaluating factors that influence hunter distribution 

and probability of success provide important information for harvest management planning and 

controlling Ohio’s deer population through recreational hunting. My goal was to investigate 

large-scale patterns of hunter distribution and efficiency by extracting relevant fine-scale data 

from individual occurrences (and random points) and identifying how a location’s surrounding 

characteristics influence hunting opportunity. I also aimed to compare harvest efficiency patterns 

with deer habitat suitability to inform hunting management decisions and large-scale population 
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control. A predictive model of hunter success can be applied by the Ohio Division of Wildlife at 

the level of deer management units (Karns et al. 2016) to inform efficient deer harvest 

monitoring and management programs. As a result, this spatial tool will contribute to strategies 

that better align unit level harvest objectives with hunter distribution and harvest rates to better 

manage deer populations and hunter satisfaction. 
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Chapter 2. Spatial Analyses of Occupancy Modeling for Northern Bobwhite in Ohio 

Abstract 

Northern bobwhite (Colinus virginianus) populations have been declining in Ohio for 

decades as a result of habitat loss and degradation caused by successional processes and changes 

in land use. Landscapes with high juxtaposition and interspersion of early successional, 

agricultural and forested vegetation are important to fulfill bobwhite resource requirements 

throughout all life stages. I applied land cover composition data to empirically derived distance 

to cover-type functions with the goal to predict probability of bobwhite occupancy throughout 

their current range in Ohio. I then compared final model accuracy to a correlational model of 

naïve landscape indices that similarly predicted occupancy from landscape metrics. Eighty five 

percent of the study area had a probability of occupancy < 0.25 during both breeding and 

nonbreeding seasons. This is indicative of inadequate habitat at a regional level, which has been 

suggested as the most appropriate level of management for this species. I assessed predictive 

accuracy of both models by predicting occupancy at points where Ohio Division of Wildlife 

(ODW) whistle count surveys were conducted and comparing predictions to presence or absence 

of bobwhites. Though both models were accurate to the commonly accepted threshold of 0.7, the 

distance to cover type model had higher area under the receiver operating curve (AUC) and 

kappa statistics. The empirical distance to cover type model more accurately distinguished cases 

of bobwhite presence than the landscape metrics model. This finding could be used to support 

the value of highly detailed studies done at a fine scale for identifying patterns that can be 

extrapolated out to scales which are practical and useful for conservation management plans. 

However, since user accuracy was higher in the distance to cover type model and producer 
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accuracy was higher in the landscape metrics model, context related to the model purpose may 

be needed to identify which is appropriate in a given situation.  

Introduction 

Northern bobwhite (Colinus virginianus) is an important game species that have 

experienced population declines and range contraction in Ohio since before the 1980s (Spinola 

and Gates 2008). The main driver of bobwhite decline is thought to be habitat loss and 

degradation due to widespread land use changes (Klimstra 1982, Brennan 1991, Veech 2006). 

Despite decades of research and management programs, bobwhite populations continue to 

decline with no sign of abatement over much of the species’ range. Shifts in farming practices 

toward intensive, large-scale cropping practices reduces landscape heterogeneity that bobwhite 

need to thrive, specifically by eliminating field and weedy areas that formerly provided 

important nesting, roosting, and foraging habitat (Klimstra 1982, Brennan 1991). Increasing 

populations are associated with a heterogeneous landscape of agriculture, grassland, and early 

successional woody vegetation, while declining populations are found in landscapes with higher 

proportions of forest and urban areas (Veech 2006).  

As a nonmigratory bird species, adequate resources must be accessible year-round and 

throughout all life stages, making it even more important to increase habitat suitability in their 

range. Though mobility can be high between breeding and nonbreeding seasons, resources 

should be within close proximity to each other as bobwhite have limited capacity to move and 

find protective cover from predators. Being a ground-dwelling species makes bobwhite 

vulnerable to predation as they travel between resources. Predation has been suggested as an 

important suppressor of bobwhite population because land use changes which have depressed 
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bobwhite populations may work to benefit populations of bobwhite predators (Rollins and 

Carroll 2001). Research has demonstrated relationships between bobwhite use and distance to 

several cover types, such as less use of cropland as distance to cover increases (Guthery and 

Bingham 1992) and lower use of grasslands as woody encroachment increases due to higher risk 

because of overlap between 2 avian predators (Atuo and O’Connell 2017). Other studies linked 

higher bobwhite survival to more shrub cover and higher distance from trees (Mosloff et al. 

2021, Sinnott 2021). Proximity to necessary resources is therefore an important consideration for 

habitat evaluation and more broadly for evaluating population trends and threat of extirpation.  

Resource selection studies are important for defining habitat requirements, which is 

necessary to create effective management plans. Studies of this nature assume that individuals 

choose available resources to maximize individual fitness via habitat selection. Bobwhite have 

been shown to select areas with a variety of cover types, with selection varying spatially and 

seasonally (Guthery et al. 2005, Hiller et al. 2007, Gates et al. 2017). For example, nonbreeding 

season survival limits population growth of northern populations (Folk et al. 2007, Sandercock et 

al. 2008, Rosenblatt 2020) and varies with severity of winter weather (Janke and Gates 2013, 

Janke et al. 2017). Increases in early successional woody vegetation and row crops have been 

linked to lower winter mortality as they increase cover and food resources, though these cover 

types must be in close proximity (Janke and Gates 2013, Janke et al. 2015). Habitat requirements 

seem to change as the breeding season progresses. Nesting bobwhite select increased litter 

content along with tall grassland and woody vegetation to obstruct view from predators (Taylor 

et al. 1999, Townsend et al. 2001, Lusk et al. 2006, Collins et al. 2009). However, daytime 

brooding sites favor visual obstruction and bare ground to enhance feeding efficiency during the 

day (Taylor et al. 1999, Burke et al. 2008, Collins et al. 2009) while litter is selected for at night 
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to create a more hospitable microclimate before chicks are thermally independent (Taylor et al. 

1999). These variable habitat requirements must also be available on a larger scale to provide 

essential resources throughout each season and facilitate survival and reproductive success. 

Therefore, effective management should focus on creating and maintaining heterogeneous 

landscapes to achieve population stability and growth by mitigating intense winter mortality 

and/or increasing reproduction (Janke and Gates 2013, Janke et al. 2017). 

A usable space model quantifies the amount of habitat within an area that contributes to 

fitness of a focal species (Guthery et al. 2005). This method differs from habitat models that 

focus on translating discrete landscape measures into landscape quality. Guthery (1997) 

developed the usable space model for northern bobwhites defining usable space as “habitat 

compatible with the physical, behavioral, and physiological adaptations of bobwhites, in a time-

unlimited sense”. The model postulates that bobwhite density in a specific area should be 

proportional to the usable space found in the same area (Guthery 1997). Following this 

interpretation, creating more usable space should provide bobwhites with the necessary resources 

to recover from population decline (e.g. Guthery et al. 2005, Hiller et al. 2007). Targeted 

increases in usable space could also work to improve the functional connectivity of the 

landscape, which is important for bobwhite as they are relatively poor dispersers if adequate 

resources are spaced too far apart (Berkman et al. 2013, Coppola et al. 2021). Under certain 

methodological and ecological assumptions, Guthery et al. (2005) used use-availability data and 

cover type selection ratios to estimate amounts of usable space and percent usable space per 

cover type. Upon finding that all cover types in the study areas contributed to usable space (even 

avoided types), Guthery et al. concluded that variation in vegetation structure may be an 

important factor impacting bobwhite cover selection and therefore, how usable space is 
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proportioned. Guthery et al.’s (2005) application of usable space investigates the overall amount 

of space suitable for occupancy by bobwhite.  

This chapter of the thesis builds on a different method of quantifying usable space by 

Gates et al. (2017). The two designs differ because Gates et al. (2017) considered spatial and 

temporal variation on usable space, while Guthery et al. (2005) does not investigate the influence 

of habitat-type distributions on usable space. Gates et al. (2017) was similar to that of Guthery 

and colleagues by using presence-absence data to evaluate usable space; however, they departed 

from Guthery et al.’s work by considering the impact of landcover type interspersion by 

calculating distance to nearest focal cover types from points of bobwhite occupancy. Gates et al. 

(2017) tracked radio-marked bobwhites to measure nearest distance to each important cover type 

other than the one they were found in. They used logistic regression on these data along with a 

set of random points to create equations which predicted probability of use at a particular 

location within a cover type as a function of distance to other cover types. By applying this 

proximity-based method to data from both breeding and nonbreeding seasons, Gates et al. (2017) 

were able to investigate the influence of temporal and spatial variation on usable space for 

bobwhite. An area must have the necessary types, amounts, and distribution of habitat in order to 

provide adequate resources for food, cover, and nesting for bobwhite (Schroeder 1985) and the 

influence of cover-type distribution on probability of occupancy was specifically targeted by this 

approach.  

Bobwhite occupancy probability models which differ in approach from the usable space 

and cover type interspersion and configuration techniques described above have been explored in 

past research. One such model created by Rosenblatt (2020) was developed to describe single-

season bobwhite occupancy probability based on relevant landscape metrics. This model differs 
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from those developed by Gates et al. (2017) in several ways: 1) the data came from point count 

surveys, whereas Gates et al. (2017) models were based on empirical data from radio telemetry 

which detailed bobwhite movement behavior in response to landcover interspersion; 2) the 

model variables included various landscape metrics targeting correlational relationships between 

bobwhite presence with landscape composition and configuration, while Gates et al. exclusively 

considered bobwhite habitat use in response to distance to focal cover types; 3) the study area 

was originally conducted with coarser data over at a broad scale similar to my own, while Gates 

et al. data collection and modeling were done on small study areas with fine-scale data. 

 Functions found to be most descriptive of bobwhite use relative to distance between focal 

cover types were applied over individual study sites to map bobwhite occupancy probability in 

the previous site-level studies (Wiley 2011, Gates et al. 2017). I applied site-level distance to 

cover type functions across the landscape of southern Ohio to map bobwhite distribution over 

this range and compare results to whistle count surveys done within the landscape to assess 

predictive accuracy. I applied the same model parameters identified by Rosenblatt (2020) to my 

study area. I contrasted model performances by comparing predictive ability between the two 

models. The aim of this comparison was to draw conclusions concerning how different 

approaches in independent variables and training data impacts model accuracy when examining 

species distribution.  

I had two main objectives for conducting this project: 1) apply Gates et al. (2017) models 

to bobwhite core habitat at a large scale and evaluate for model accuracy after extrapolation; 2) 

compare this model’s predictive ability with that of Rosenblatt (2020) to determine which 

approach has better potential to describe bobwhite habitat. I expected the model results to show 

small, isolated patches with a particular configuration of cover types that are potentially 
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habitable by bobwhites based on empirical knowledge of spatial patterns of habitat use from 

intensive studies of home ranges and daily movements of radio-marked bobwhites. I also 

hypothesized that my model’s results would demonstrate higher accuracy in outlining bobwhite 

distribution than Rosenblatt (2020) obtained because of the differences in data collection 

methodology from which each model was created. Gates et al. (2017) models were created from 

empirical data which directly measures how bobwhite move and occupy the landscape in 

response to distance to focal cover types. Rosenblatt (2020) model differs from this by using 

metrics describing landscape structural characteristics which bobwhite respond to using point 

counts, rather than measuring the response itself. Based on these differences in methodology, I 

was able to investigate potential tradeoffs between data collection effort and model accuracy for 

a landscape-scale model.  

Methods 

Study Area  

Though once common throughout Ohio, bobwhite core range has contracted to the 

southwestern and south-central areas of the state (Spinola and Gates 2008). This project was 

conducted on Ohio’s core areas for bobwhite presence (Figure 1.1) and aligns with Ohio 

Department of Natural resources (ODNR) whistle count data routes (Appendix A). The western 

part of the study area was categorized as the Till Plain region of Ohio, which is generally 

categorized by flat land and land use is dominated by crops. There were also large urban areas, 

as the city of Cincinnati is in southwest Ohio. The south and southeastern areas tend to be hillier 

and include a greater amount of forested land (Lafferty 1979). The current range for northern 

bobwhite in Ohio aligns with the glacial boundary, which distinguishes the topography between 
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the flatter and hillier areas of the state, and with the land use transition from the heavily cropped 

western site to the heavily forested eastern side of Ohio.  

      

 
 

Figure 1.1. Study area based on ODNR whistle count surveys conducted in southern Ohio in 

2014-2018 outlined over relevant counties (left) and overlaid on NLCD 2016 (right).   

 

Data Sources and Methods  

I acquired landcover data from the National Landcover Database (NLCD 2016) at 30-

meter spatial resolution. I masked the data to the study area and reclassified NLCD landcover 

types into 5 new categories to better match those used in Gates et al. (2017) (Table 1.1). I used 

tree canopy height and percent tree cover rasters from the Global Land Analysis and Discovery 

(GLAD) lab (Hansen et al. 2013) to improve differentiation between forest and ES woody 

(Wickham et al. 2017, Wickham et al. 2021), which is especially important for bobwhite (e.g. 

Townsend et al. 2001, Janke and Gates 2013, Gates et al. 2017). The Calculate Raster function 
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was used to convert forest cells with a canopy height <6 m and percent canopy cover <30% into 

ES woody cells to improve classification of ES woody cover. Equations predicting occupancy 

probability using cover-type distances as independent variables were applied from Gates et al. 

findings (2017) (Appendix B and Appendix C). 

Original Class  Reclassified Class 
Deciduous Forest Forest 
Evergreen Forest  Forest 
Mixed Forest Forest 
Shrub Early Successional Woody 
Herbaceous Early Successional Herbaceous  
Pasture Pasture 
Cultivated Crops Crops 
All Other Classes No Data 

Table 1.1. Description of NLCD reclassification.  

 

I used the Extract by Attributes tool in ArcMap to extract each cover type from the 

NLCD data to create a new spatial layer for each cover type. By inputting these layers into 

ArcMap’s Euclidean distance tool, I calculated the distance from every raster cell of the study 

area to the nearest of each landcover class. This tool was used once on each of the 5 cover 

classes. A raster file delineating a single cover type and Euclidean distance rasters for each of the 

four other cover types were used as inputs into ArcMap’s Combine tool to create a raster with an 

attribute table detailing distance from cells of a single cover type to nearest cells of the other 4 

cover types. I then applied cover-type functions, which were created to model bobwhite 

occupancy probability by applying logistic regression to data which measured distance to focal 

cover types from radio-marked bobwhite locations (Gates et al. 2017). For each distance raster a 

new field was created and filled by inputting the corresponding cover-type function into 

ArcMap’s Calculate Field tool with distances to other cover types from a particular cell as the 

model inputs. A new field was then created and populated by performing an inverse logit, the 

result of which was predicted probability of occupancy for each cell based on Gates’ et al. (2017) 
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cover type equations. This process was repeated on the same landcover data to calculate 

probability of occupancy for the breeding and nonbreeding seasons. A third raster was created to 

obtain a composite value over both seasons by adding seasonal model cell values together and 

rescaling to values between 0-1. This composite raster was used for following model comparison 

analyses because habitat available during both seasons was expected to be important for deciding 

bobwhite presence because of seasonal survival.   

Model Comparisons  

Both the usable space and landscape metrics models were applied to the same set of 

whistle count data collected by ODNR over 27 counties in southern Ohio (Appendix A) during 

mid-May to late-June 2014-2018. Surveys were done at 325 randomly selected road routes each 

with 6 stops. Observers recorded numbers of bobwhite seen or heard over 1 minute survey 

intervals at each stop. The data were converted from count to occupancy by aggregating over the 

4 years and denoting presence when at least 1 bird was recorded at a single stop. Both models 

were applied to data at stop and route levels.  

Whistle count surveys represent presence or absence over a certain detection radius while 

the distance to cover type functions predict presence at a specific point. For this reason, a 

secondary model construction was needed to account for occupancy probability of the detection 

within the point count radius, rather than the actual survey point. To accomplish this, I calculated 

three related metrics: Euclidean distance to a pixel of certain occupancy probability, proportion 

of probabilities above and below certain probability thresholds, and mean probability. 

Probability thresholds for the first two metrics were tested between 0.1-0.9 at intervals of 0.2. 

The latter two metrics were calculated over a 630-m buffer to approximate breeding season home 

range (Liberati 2013). After exploring other methods (e.g. logistic regression, random forest 
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classification), we decided to apply quadratic discriminant analysis (QDA) to this model 

selection because it can be used to identify non-linear boundaries between classes and does not 

assume equal covariance among classes. As a result, QDA provided a better fit for our data and 

goals (Qin 2018). After testing several combinations of variables listed above, the best 

performing model was chosen for subsequent analyses.   

I examined final model results from Rosenblatt (2020) to apply their landscape metric-

based model to compare accuracy with to the distance to cover type-based model. Rosenblatt 

created their model using logistic regression to test landscape metrics hypothesized to predict 

bobwhite presence based on point count surveys conducted for the Ohio Breeding Bird Atlas 

(2006-2011). Rosenblatt’s study area extent was similar to that of ODNR whistle count survey 

and my own study, though it did not extent as far north on the eastern side (Figure 1.2). The final 

model consisted of 5 variables: forest cohesion, percent agriculture, percent agriculture squared, 

percent barren land and percent herbaceous land. Rosenblatt calculated these metrics using R 

package ‘landscapemetrics’ (Hesselbath et al. 2019) on NLCD landcover data over a 630 m 

buffer to approximate summer home range size (Liberati 2013), methods which I followed in my 

study.  
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Figure 1. 2. Study area from Rosenblat (2020) where points represent bobwhite locations from 

Ohio Breeding Bird Atlas Survey during 2006-2011. Gray areas represent modeling study area.  

 

I evaluated accuracy of both modeling approaches and compared the results. Quadratic 

discriminant analysis was applied to both models. Since the data was skewed towards absent 

points, I used and compared a receiver operating characteristic (ROC) curve and a precision-

recall curve (PRC) to summarize model performance at different thresholds using ‘pROC’ 

(Robin et al. 2011) and ‘precrec’ (Saito and Rehmsmeier 2017) R packages, respectively. 

Though both ROC and PRC curves summarize model accuracy at different thresholds, they 

differ in the accuracy metrics used. ROC reports true positive rate (i.e. sensitivity) as 

True Positives

True Positives + False Negatives
 on the y-axis and false positive rate (i.e. 1 - specificity) as 
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False Positives

False Positives + True Negatives
 on the x-axis. PRC accounts for data that are unbalanced between 

positive and negative data points by reporting positive predictive value (i.e. precision) as 

True Positives

True Positives + False Positives
 on the y axis and recall on the x-axis, where recall is equal to 

sensitivity . By not including true negatives in the equations, PRC accounts for datasets where 

absences are much more frequently observed than positives (Davis and Goadrich 2006).  

I calculated several model performance metrics at the proportional probability threshold 

(above which indicates presence, below indicates absence) calculated by number of negatives in 

the data divided by total data points and at the “optimal threshold” which was calculated using 

the ‘ROCit’ package (Khan and Brandenburger 2020) in R software. The optimal threshold is 

defined as the one that maximizes the difference between the true positive rate and false positive 

rate. I calculated sensitivity, specificity, positive predictive value, negative predictive value and 

kappa value at the proportional and optimal thresholds to evaluate model predictive ability. 

Sensitivity (i.e. producer’s accuracy) (Liu et al. 2007) describes the model’s ability to predict an 

outcome of presence when bobwhites are present. Specificity describes the how often the model 

will predict an absence when the location is absent of bobwhite. Positive predictive value (i.e. 

user’s accuracy) (Liu et al. 2007) is calculated by 
True positives

True positives + False positives
 and represents the 

ratio of positives that were correctly predicted out of all positives predicted by the model. 

Similarly, the negative predictive value is calculated by 
True negatives

True negatives + False negatives
 and 

represents the ratio of correctly predicted negative outcomes compared to total negative 

predictions by the model. Lastly I computed kappa statistic, which describes the accuracy of the 

model compared to what would be expected of random chance predictions.  
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Results 

Maps displaying final probabilities of bobwhite occupancy generally demonstrated vast 

areas of low occupancy values (non-habitat), smaller areas of median level values and much 

smaller pockets of high occupancy probability (Figures 1.2, 1.3, 1.4). Areas with probability of 

occupancy < 0.25 comprised about 85% of the study area during both breeding and nonbreeding 

seasons (Tabe 1.2). Comparing the results for breeding and nonbreeding seasons, areas of 

median probability of occupancy were clumped into small patches in the breeding season while 

they were more spread in the nonbreeding season. The southeastern AOI had similarly low 

occupancy probability in both seasons as this highly forested portion had sparse, median level 

values. Values of high occupancy probability were more condensed during the breeding season 

(Table 1.2). The map of nonbreeding season occupancy probability shows more spread areas of 

higher occupancy, with relatively large areas of very high probability west of Circleville (Figure 

1.3). In both cases, though, there was a clear pattern where higher occupancy occurred around 

the transition zone from intensive crop areas to heavily forested areas. The composite map had 

lower percentage of probability values at the two extremes and a higher percentage towards the 

lower median.  

Probability Range % Breeding % Nonbreeding % Composite 

0 – 0.24 85.0 85.7 81.8 

0.25 – 0.49 5.7 5.6 12.6 

0.50 – 0.74 4.2 5.5 4.5 

0.75 - 1 5.1 3.2 1.1 

Table 1.2. Percent of cells within certain probability of occupancy ranges for breeding, 

nonbreeding and composite models results using a model based on distance between important 

cover types for Northern bobwhite throughout southern Ohio.  
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Figure 1. 3. Map displaying model values predicting occupancy probability of northern 

bobwhite in the breeding season over southern Ohio based on distance to cover type functions. 
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Figure 1. 4. Map displaying model values predicting occupancy probability of northern bobwhite 

in the nonbreeding season over southern Ohio based on distance to cover type functions. 
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Figure 1.5. Map displaying composite model values predicting occupancy probability of northern 

bobwhite over southern Ohio based on distance to cover type functions. 

 

Whistle count survey data used to calculate accuracy indices for each model totaled 1881 

observations at the stop level and 315 observations at the route level. The final model designated 

for accuracy analysis of the distance to cover type probability model 

was:dist.1*Mean+dist.3*Mean+dist.5*Mean+dist.7*Mean+dist.9*Mean, where dist._ indicates 

the Euclidean distance to a cell of at least 0.1 to 0.9 occupancy probability and Mean indicates 

the mean occupancy probability within the 630 meter buffer.  
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Model Comparisons 

 At the stop level the distance to cover type model predictions were correct at about 80% 

of the points while the landscape metrics model predictions were correct at about 71% of points 

(Table 1.3). At the route level these values were about 68% for the distance to cover type model 

and 66% for the landscape metrics model (Table 1.4). These calculations were made using the 

proportional probability threshold. Using the optimal threshold, the stop level the distance to 

cover type model predictions were correct at about 46% of the points while the landscape metrics 

model predictions were correct at about 44% of points (Table 1.5). At the route level these values 

were about 68% for the distance to cover type model and 57% for the landscape metrics model 

(Table 1.6). 

 Distance to Cover Type model  
 

 Landscape Metrics model  

O
b
se
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ed

 

 
Predicted 
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Predicted 

 

 
Absent  Present 

   
Absent  Present 

 

Absent 1210 448 73% 
 

Absent 1439 219 87% 

Present 94 129 58% 
 

Present 164 59 26% 

 
 

93% 22% 
  

 
 

90% 21% 
 

 Table 1.3. Confusion matrices using ODNR bobwhite whistle count surveys between 2014-

2018 at the stop level for both cover type distance and landscape metrics based bobwhite 

occupancy models. Conducted using proportion of class probability threshold. 

 

 Distance to Cover Type model  
 

 Landscape Metrics model  

O
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Predicted 
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Predicted 

 

 
Absent  Present 

   
Absent  Present 

 

Absent 141 77 65% 
 

Absent 138 80 63% 

Present 24 73 75% 

 
Present 28 69 71% 

 
 

85% 49%  

 
 

 
83% 46%  

Table 1.4. Confusion matrices using ODNR bobwhite whistle count surveys between 2014-2018 

at the route level for both cover type distance and landscape metrics based bobwhite occupancy 

models. Conducted using proportion of class probability threshold. 
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 Distance to Cover Type model  
 

 Landscape Metrics model  
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se
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Predicted 
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Predicted 

 

 
Absent  Present 

   
Absent  Present 

 

Absent 674 984 41% 
 

Absent 621 1037 37% 

Present 29 194 87% 

 
Present 18 205 91.93% 

 
 

95.87% 16%  

 
 

 
97% 17%  

Table 1.5. Confusion matrices using ODNR bobwhite whistle count surveys between 2014-2018 

at the stop level for both cover type distance and landscape metrics based bobwhite occupancy 

models. Conducted using optimal probability threshold 0.41 for cover type distance and 0.32 for 

landscape metrics model. 

 

 Distance to Cover Type model  
 

 Landscape Metrics model  
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Predicted 

  

O
b
se

rv
ed

 

 
Predicted 

 

 
Absent  Present 

   
Absent  Present 

 

Absent 143 75 66% 
 

Absent 91 127 42% 

Present 27 70 72% 

 
Present 10 87 89.69% 

 
 

84.12% 48%  

 
 

 
90% 41%  

Table 1.6. Confusion matrices using ODNR bobwhite whistle count surveys between 2014-2018 

at the route level for both cover type distance and landscape metrics based bobwhite occupancy 

models. Conducted using optimal thresholds 0.74 for cover type distance and 0.37 for the LSM 

(right). 

At the stop level, the model calculated using distance to cover type selection functions 

generally outperformed the landscape metrics model in all categories except specificity which 

was about 0.03 higher for the landscape metrics model (Table 1.7). Sensitivity was more than 2 

time higher, positive and negative predictive values were marginally higher (Δ = 0.01, Δ = 0.03 

respectively) and the kappa value was higher by more than half the value for the landscape 

metrics model (Δ = 0.063). Both models showed AUC values which were substantially higher 

than the baseline for ROC and PRC measures (Figure 1.6, Figure 1.7). Though the landscape 

metrics model had a higher AUC value under the ROC curve (Δ = 0.0056), the model based on 

cover type distance resulted in a higher AUC under the PRC curve (Δ = 0.0264). The optimal 
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probability threshold was  0.7439 and 0.3201 for the cover type distance and landscape metrics 

based models, respectively. After applying these thresholds the comparison results were different 

than with weighted probability (by proportion of positives) thresholds (Table 1.7). At optimal 

thresholds, sensitivity was higher in the landscape model (Δ = 0.049). Positive and negative 

predictive values and kappa value were similar for both models, though higher in the landscape 

metrics model (Δ = 0.0004; Δ = 0.0131; Δ = 0.0018). The distance to cover type model had a 

higher specificity value (Δ = 0.0131).  

 
Proportional 

Threshold 

Optimal Thresholds 

Metric Cover 
Type 

Distance  

Landscape 
Metrics  

Cover 
Type 

Distance   

Landscape 
Metrics  

Sensitivity 0.5785 0.2646 0.8700 0.9193 
Specificity 0.0721 0.1023 0.0413 0.0282 

Positive Predictive Value 0.2236 0.2122 0.1647 0.1651 
Negative Predictive Value 0.9279 0.8977 0.9587 0.9718 

Kappa 0.1827 0.1197 0.0969 0.0987 

Table 1.7. Accuracy metrics using southern Ohio northern bobwhite whistle count surveys 

between 2014-2018 at the stop level for both cover type distance and landscape metrics based 

models. Accuracy metrics were conducted using proportion of class probability threshold (left) 

and optimal thresholds 0.41 for cover type distance and 0.32 for landscape metrics model (right). 
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Figure 1.6. ROC and PRC curves (black lines) demonstrating model performance compared to a 

random classifier or baseline (dotted line) for the cover type distance-based model at stop level 

observations of southern Ohio northern bobwhite whistle count surveys conducted in between 

2014-2018.  

 

Figure 1.7. ROC and PRC curves (black lines) demonstrating model performance compared to a 

random classifier or baseline (dotted line) for the landscape metrics based model at stop level 

observations of southern Ohio northern bobwhite whistle count surveys conducted between 

2014-2018. 

Baseline = 0.5 

AUC = 0.7160 

 

Baseline = 0.1229 

AUC = 0.2040 

 

Baseline = 0.1229 

AUC = 0.2304 

 

Baseline = 0.5 

AUC = 0.7104 
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At the route level, the cover type distance model scored higher in sensitivity (Δ = 

0.0413), slightly higher positive and negative predictive values (Δ = 0.0236, Δ = 0.0232) and 

higher in the kappa value (Δ = 0.047) (Table 1.8). The landscape metrics model had a higher 

specificity (Δ = 0.0232) (Table 1.8). Once again, both models had AUC values which were 

substantially higher than the baseline for ROC and PRC measures (Figure 1.8, Figure 1.9). The 

distance to cover types model had higher AUC values for both ROC and PRC curves (Δ = 

0.0722, Δ = 0.1206). The optimal threshold at the route level for the distance to cover type model 

was 0.4118 and 0.3701 for the landscape metrics model. After applying these thresholds, the 

distance to cover type had higher specificity (Δ = 0.0598), positive predictive value (Δ = 0.0763) 

and kappa value (Δ = 0.0965) while sensitivity (Δ = 0.1753) and negative predictive value was 

higher in the landscape metrics model (Δ = 0.0598) (Table 1.8).  

 
Proportional 
Threshold 

Optimal Threshold 

Metric Cover 

Type 

Distance  

Landscape 

Metrics  

Cover 

Type 

Distance  

Landscape 

Metrics  

Sensitivity 0.7526 0.7113 0.7216 0.8969 

Specificity 0.1455 0.1687 0.1588 0.0990 
Positive Predictive Value 0.4867 0.4631 0.4828 0.4065 

Negative Predictive Value 0.8545 0.8313 0.8412 0.9010 
Kappa 0.3468 0.2998 0.3320 0.2355 

Table 1.8. Accuracy metrics using southern Ohio northern bobwhite whistle count surveys 

between 2014-2018 at the route level for both cover type distance and landscape metrics based 

models. Accuracy metrics were conducted using proportion of class threshold (left) and optimal 

thresholds 0.74 for cover type distance and 0.37 for the LSM (right). 
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Figure 1.8. ROC and PRC curves (black lines) demonstrating model performance compared to a 

random classifier or baseline (dotted line) for the cover type distance-based model at route level 

observations of southern Ohio northern bobwhite whistle count surveys conducted in between 

2014-2018. 

 

 

Figure 1.9. ROC and PRC curves (black lines) demonstrating model performance compared to a 

random classifier or baseline (dotted line) for the landscape metrics based model at route level 

observations of southern Ohio northern bobwhite whistle count surveys conducted in between 

2014-2018. 

Baseline = 0.3079 
AUC = 0.4319 

 

Baseline = 0.5 

AUC = 0.6920 

 

Baseline = 0.5 

AUC = 0.7642 

 

Baseline = 0.3079 

AUC = 0.5525 
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There were mixed results in accuracy assessment values between proportional and 

optimal thresholds. At the stop level the distance to cover type model had higher sensitivity (Δ = 

0.2915) and negative predictive value (Δ = 0.0308) at the optimal threshold, yet lower values in 

specificity (Δ = -0.0308), positive predictive value (Δ = -0.0589) and kappa value (Δ = -0.0858). 

Using the optimal threshold at the route level this model had lower sensitivity (Δ = -0.031), 

positive and negative predictive values (Δ = -0.0039) and kappa value (Δ = -0.0148), yet higher 

specificity (Δ = 0.0133). These mixed results are due to tradeoffs between error types from prior 

to posterior probability thresholds at both data levels. Mixed results were also found comparing 

results from both thresholds in the landscape metrics model. At the stop level results from the 

optimal threshold were higher for sensitivity (Δ = 0.6547) and negative predictive value (Δ = 

0.0741), yet lower for specificity (Δ = -0.0741), positive predictive value (Δ = -0.0471) and 

kappa value (Δ = -0.021). These trends were the same at the route level with optimal threshold 

results being higher for sensitivity (Δ = 0.1856) and negative predictive value, while lower for 

specificity (Δ = -0.0697), positive predictive value (Δ = -0.0566) and kappa value (Δ = -0.0643).  

For the distance to cover type model AUC values were higher at the route level than the 

stop level for ROC and PRC curves (Δ = 0.0538, Δ = 0.1371 respectively). The landscape 

metrics model decreased in AUC for the ROC curve (Δ = -0.024) and increased for the PRC 

curve (Δ = 0.0429) at the route compared to stop level. At the proportional threshold all accuracy 

assessment results for the distance to cover type model increased at the route level compared to 

the stop level, except for negative predictive value. At the optimal threshold sensitivity and 

negative predictive value decreased at the route level while the other metrics increased. The 

same trends occurred for the landscape metrics accuracy results.  
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The distance to cover type and landscape metrics models displayed similar patterns 

related to error distribution. In both cases there were areas where several false negatives were 

located. This is likely related to the clumped nature of areas where bobwhite were present, which 

is a requirement for a false negative to result from the model predictions. Interestingly, the most 

southern areas of central and eastern Ohio where forest cover predominates had more false 

negatives in both models.  

 
Figure 1.10. Map results of model predicting northern bobwhite occupancy based on 

distance to focal cover types. The model was applied to predict occurrence at stops of 

ODNR whistle count survey conducted in southern Ohio between 2014-2018. 
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Figure 1.11. Map results of model predicting northern bobwhite occupancy based on 

landcover metrics. The model was applied to predict occurrence at stops of ODNR 

whistle count survey conducted in southern Ohio between 2014-2018. 

Discussion  

 The current bobwhite range is characterized by large areas of a single continuous 

landcover type such as northwestern Ohio that is dominated by row crop. Knowing that bobwhite 

require an interspersion of several cover types to meet requirements throughout their life stages 

(Shroder 1985, Roseberry and Sudkamp 1998, Hiller et al. 2007), we expected the study to show 

only small pockets of areas that are potentially habitable for this species. This prediction appears 

to have been correct as 85% of the study area had a probability of occupancy less than 0.25 in 

both breeding and nonbreeding seasons. This is indicative of inadequate habitat at a regional 

level, which has been suggested as the most appropriate level of management for this species 

(Williams et al. 2004). The final maps of occupancy probability over the study area emphasize 
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that bobwhite were more likely to be found in the transition zone between forest and agricultural 

dominated lands than in areas where a single cover type dominates. These maps could also be 

used to address the issue of fragmentation, the solution to which may be creating more connected 

habitat over a board scale to have a meaningful impact on conservation goals for this species 

(Miller et al. 2019). Targeted habitat improvement in areas where occupancy probability was 

high and bobwhite were absent proximate to areas where they were present could increase 

functional connectivity for the species. This could in turn increase bobwhite survival (Coppola et 

al. 2021), dispersal and geneflow (Berkman et al. 2013), and ultimately local population 

persistence (Sans et al. 2012, Miller et al. 2019) 

The final maps visually aligned with expectations based on general knowledge of 

bobwhite presence in Ohio in some areas, though not as well in others (Appendix A). Known 

populations exist in southern Ohio near Peebles town and the areas studied in Gates et al. (2017). 

Likewise, there are known populations in southwestern Ohio, near the Indiana border. Both 

seasons show pronounced areas of mediate (yellow) and high (red) occupancy probability in 

these areas. On the other hand, known populations near Crown City wildlife area do not seem to 

be as well represented in the produced maps. The reason for this may be differences in general 

landcover between south and southwestern Ohio where Gates et al. (2017) study was conducted 

which is dominated by row crop and pasture with some wooded areas, compared to the heavily 

forested landscape seen in southeastern Ohio. These results may hint that cover type selection 

between populations in the two landscapes differs and could be an avenue for future research. On 

the other hand, small, declining populations in this region could be a symptom of the lack of 

adequate habitat in the area (Spinola and Gates 2004, ODNR 2017).   
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Comparisons of model accuracy in predicting bobwhite occupancy between my broad 

scale application of distance to cover type resource selection equations and Rosenblatt (2020) 

landscape metrics model yielded mixed results. Aggregating data from stop to route level 

generally increased AUC value, except for the ROC curve for the landscape metrics model. On 

the other hand, using more generalized data could result in losing important variation and 

introducing higher bias. Route level analysis also generally resulted in higher values for the 

accuracy assessment tables. Higher model accuracy of spatially aggregated data may result from 

both models using data inputs at the scale of bobwhite home range size, meaning covariates may 

be more relevant at a broader scale. Due to the increases in accuracy at the route level, the 

remaining discussion will focus on comparing results of route level accuracy analyses between 

models.  

Both models produced AUC results ≥ 0.7, which is a commonly used threshold of model 

accuracy at which point a model is deemed fairly accurate. Though both models met this 

threshold, the distance to cover type model performed better than the landscape metrics model in 

AUC. These results indicate that the distance to cover type model may be more capable of 

distinguishing between cases of bobwhite presence and absence.  

Though AUC values are useful as a general measure of separability, more specific 

measures of accuracy are needed depending on research questions and management techniques 

being explored through model results. It is imperative to acknowledge that all types of error are 

not equal when evaluating models concerning bobwhite distribution. In the case of false 

positives, there could be fine-scale habitat characteristics that are not captured by these models 

which precludes bobwhite presence, despite adequate cover type interspersion or landscape 

structure. Such errors of commission could be used for management planning as a step to 
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identify areas where restoration could be used to improve fine-scale aspects of habitat quality 

with the goal of increasing areas which can support bobwhite occupancy. On the other hand, 

false negatives are less acceptable because this result indicates bobwhite presence where the 

model predicted absence. Errors of omission indicate that a model did not identify habitat as 

adequate when bobwhite were present, meaning bobwhite responded to a habitat characteristic 

not accounted for in the model.  

Sensitivity is an important metric to consider because it includes measures of true 

positive and false negative predictions. Sensitivity was highest in the landscape model using the 

optimal threshold, meaning this model was better able to predict presence when presence was 

observed. This model also demonstrated the higher negative predictive value, which indicates 

that this model was more correct when it predicted absence than the distance to cover type model 

also at the optimal threshold. On the other hand, the distance to cover type model demonstrated 

higher specificity, meaning it was better able to predict absence when absence was observed. 

When comparing sensitivity and specificity, both models demonstrated much higher sensitivity 

values, suggesting that identifying actual cases of presence comes with the tradeoff of a high rate 

of false positives. The distance to cover type model also had a higher positive predictive value, 

which indicates that this model was more correct when it predicted presence than the landscape 

metrics model at the optimal threshold.  

Context is needed to evaluate which metrics are most relevant to a given situation and, 

therefore, which model is more appropriate. For instance, if a bobwhite manager were to use the 

results of one model to identify areas where bobwhite were present, the distance to cover type 

model would be more appropriate since it yields better odds of presence when presence is 

predicted. However, from the perspective of a researcher deciding which modeling approach will 
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more often predict presence when presence is the observed result, the landscape metrics model 

would be more appropriate. These tradeoffs between user and producer accuracy are complex 

and should be evaluated depending on intended model use.  

I began these model comparisons with the hypothesis that my distance to cover type 

model would display increased ability to discern areas of bobwhite occupancy because the cover 

type selection equations were trained on bobwhite movement and habitat use data. Based on the 

two more general measures of AUC and kappa values, the distance to cover type model was 

better at predicting bobwhite occupancy. That said, conclusions about which model is 

appropriate are dependent on the context intended use.  

The distance to cover type equations were originally created with empirical, fine-scale 

data collected on smaller study sites, which makes the extrapolation of results to the entire 

species range in Ohio even more interesting. Since the landscape metrics model was created 

based on coarser data collected over a broad scale, it is important to note that this model 

generally performed at a lower level than one created based on highly specific, yet fine scale 

empirical data. This finding could be used to support the value of highly detailed, higher effort 

studies done at a fine scale for identifying trends which can be extrapolated out to scales which 

are practical and useful for conservation management plans. On the other hand, benefits of taking 

an approach similar to that of Rosenblatt (2020) are that field data collection is not needed since 

this data is open-source and model performance was similar to the distance to cover types, even 

higher in the case of producer accuracy. As discussed above, the context of use is significant to 

decide which model is more appropriate. User vs. producer accuracies, available resources and 

level of accuracy needed should be accounted for.  
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Future studies could make necessary changes which would improve this model. First, 

applying distance to cover type selection equations to landcover data which differentiates over 

seasons. Although NCLD is useful as an easily accessible, large-scale dataset, seasonal 

differences in landcover and vegetation types are represented. Since the model created in this 

study cannot account for seasonal changes in vegetation, it may overestimate probability of use 

where certain cover types are present in the breeding season but diminished in the nonbreeding 

season, such as early successional woody cover. Additionally, we likely did not represent early 

successional woody cover or discriminate grassland from other herbaceous cover as Gates et al. 

(2017) were able to do at the site scale due to using NLCD which is coarser and less able to 

make certain distinguishments via remote sensing. Another improvement to the model would be 

including data concerning urbanization, which has been linked to declining bobwhite populations 

(Veech 2006, Miller et al. 2019) as this could narrow down potential management areas with the 

ability to support sustained or increasing populations. 

Management Implications 

This study evaluated potential for Northern Bobwhite occupancy on a regional scale, 

which could be used to inform future conservation management over their range in southern 

Ohio. The final maps of occupancy probability over the study area emphasize that bobwhite were 

more likely to be found in the transition zone between forest and agricultural dominated lands 

than in areas of Ohio where a single cover type dominates. Map results could be used to identify 

areas which would benefit from habitat restoration to meet year-round landcover needs where 

populations are known to be present and declining due to lack of adequate habitat. Loss of 

adequate habitat has been identified as a driving factor in bobwhite declines (Brennan 1991, 

Guthery 1997, Veech 2006). Management of the species could benefit from information related 
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to the current state of potential for bobwhite occupancy for certain conservation techniques such 

as reintroduction and habitat restoration. Focusing management efforts in areas with the highest 

potential for benefit to the species will be important for reversing long-term population declines 

(Roseberry and Sudkamp 1998). 

 This study also demonstrates the importance of small-scale, high effort data collection 

for the purpose of evaluating large-scale trends in vulnerable populations. This approach of 

extrapolating highly specific findings related to habitat use could be applied to other early-

successional dependent species which are declining throughout their range, as I did in this study.  
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Chapter 3. Spatial Analyses of Regional Patterns of White-Tailed Deer Hunter Distribution 

and Success in Ohio 

Abstract 

Management of white-tailed deer (Odocoileus virginianus) is an essential task for many 

wildlife management agencies due to their economic, recreational and social importance. Harvest 

management is a key tool for capturing the benefits and mitigating some detrimental social and 

ecological impacts of increasingly abundant white-tailed deer populations in Ohio and other 

midwestern states. I used state-wide survey data of deer hunting events during 2011-2014 to 

evaluate factors that influenced deer hunter distribution and probability of success within 

potential Ohio deer management units with the goal to provide important information for harvest 

managers at a regional scale. While final model results were complex, the strongest relationships 

captured in all models showed hunters were more likely to hunt but less likely to harvest deer on 

public compared to private lands. I found differences in final model covariates and the impact 

they had on hunter use and success between DMUs, which differ based on aspects of human 

social, geophysical and landcover composition. For example, while all DMUs had a clear trend 

for hunters to select for locations with a higher percentage of forest and public land, strength of 

selection for these predictors and which cover types were avoided differed by DMU and, 

therefore, by landscape context. These results suggest that overall, incentivizing landowners to 

allow hunting on their property and facilitating access for hunters may be the most effective 

strategy to increase hunter success. Additionally, information concerning hunter behavior and 

outcomes in response to spatial variables can be used to devise region-specific management 

plans to achieve region-specific deer harvest and population goals. 
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Introduction 

White-tailed Deer (Odocoileus virginianus) have great economic, social, and ecological 

significance in Ohio, where this species became the state mammal in 1988. Due to being a 

habitat generalist, this species can be found in a variety of habitat types including forests, 

agricultural landscapes (Nixon et al. 1970), wetlands (Hummel et al. 2018) and shrublands 

(Iverson and Iverson 1999). This species demonstrates a high degree of adaptability to human 

interaction, which allows them to occupy areas in urban settings such as metroparks and 

residential areas (Iverson and Iverson 1999; Kilpatrick and Spohr 2000). Areas characterized by 

high edge amount and interspersion of cover types can benefit this species by providing cover 

and forage resources nearby each other throughout the year (Alverson et al. 1988, Quinn et al. 

2013, Cain et al. 2019).  

By 1860 European settlement had begun taking a toll on Ohio’s white-tailed deer 

population through a combination of reducing forest area and intense hunting, ultimately 

extirpating the species here and in nearby states by 1905 (Nixon 1970). Efforts to grow the 

population consisted of restocking, restricted hunting policies and reforestation (Nixon 1970). 

Ohio’s deer population has generally increased since this time, estimated to be 17,000 in 1970 

and 700,000 in 2006 (ODNR 2006).  

     Management strategies to reduce negative sociological and ecological impacts of high 

white-tailed deer abundance in Ohio have become an important concern. To devise an effective 

management plan concerning the widespread impacts of Ohio’s herd, large-scale research and 

planning is needed. Hunting is the most preferred method of deer management for state level 

managers because it generates income while also advancing management agency population 

goals. Unfortunately, hunting participation in North America has declined in recent decades. 
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U.S. Fish and Wildlife Service 2016 hunting levels were the lowest seen in 25 years. Reasons for 

hunter decline include low recruitment in young, non-white, non-male and non-hunter 

populations (Mehmood et al. 2003, Poudyal et al. 2008, Gude et al. 2012); increased interest in 

virtual entertainment and urban lifestyles (Robinson and Ridenour 2012, Karns et al. 2015); and 

a lack of time, land access and game (Mehmood et al. 2003, Miller and Vaske 2003). If declines 

continue this way, the future of hunting as a viable strategy to generate funds for conservation 

and manage deer populations is questionable due to lack of participation (Winkler and Wanke, 

2013).  

Opinions on necessary changes to deer density and related management techniques vary 

widely depending on the stake that people have in the issue and their perception of acceptable 

deer population size compared to their perception of current abundance. D’Angelo and Grund 

(2015) found that 51% of farmers in Minnesota supported reduction of deer densities, despite 

their perception that damage due to deer was insignificant. Of hunters surveyed in the same 

study, 62% indicated that deer densities should be increased. Kilpatrick et al. (2007a) found that 

most homeowners in Connecticut did not allow hunting on their own land, despite being open to 

lethal management techniques for reducing human-deer conflicts. This link between hunter and 

landowner attitudes becomes significant to management strategies in light of the strain that 

access to hunting land can impose. When potentially deer-rich private, subdivided land parcels 

(Lovely et al. 2013) do not allow access to hunters, this can create a negative scenario for all 

parties due to financial losses to farmers, nuisances to homeowners and loss of successful 

opportunities for hunters (Haden et al. 2005, Proffitt et al. 2013).  

Studies focusing on factors influencing hunter distribution and success have been 

conducted in the past. Diefenbach et al. (2005) found that deer hunters were 1.5 times less likely 
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to hunt for every 5% increase in slope while 87% of hunters stayed within 0.5 km of the nearest 

road, making slope and distance to road potentially important predictors of hunter density. 

Unfortunately, hunters seem to experience a lower chance of success in areas near roads (Iverson 

and Iverson 1999, Cooper et al. 2002, Lebel et al. 2012, Rowland et al. 2021). Increased 

development and parcelization of land can limit hunter access, thereby reducing harvest pressure 

and acting as refugia for deer (Harden et al. 2005, Lovely et al. 2013). On the other hand, 

fragmented forests can increase resources and potentially carrying capacity for deer (Alverson et 

al. 1988). More fragmented forest landscapes can increase vulnerability of deer to harvest by 

reducing dense cover, leading to a higher hunter of success rates if accessibility needs are met 

(Foster et al. 1997, Lebel et al. 2012).  

Unevenness in hunter distribution causes gaps where hunting does not occur (either due 

to lack of access or being unpreferable) despite high deer densities, creating areas with low 

harvest risk that act as refugia (Harden et al. 2005, Lovely et al. 2013). As the efficacy of hunting 

decreases as a technique for population reduction and income generation, wildlife managers are 

pressed to deal with overabundant species with smaller funds. Each of the variables mentioned 

above can be measured in relation to individual, fine-scale incidents of hunting or other human-

wildlife interactions, however these distinct experiences cannot directly inform population 

management strategies. In order to make conclusions about regional patterns related to deer 

hunting, fine-scale characteristics can be analyzed along with the relevant outcome (hunter 

presence and/or success) over a region. Using this approach, results will theoretically reflect 

patterns occurring at a scale which is useful to managers looking to make changes to regional 

hunting regulations and population trends. 
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 Dynamics of deer population and harvest management are scale-dependent (Foster et al. 

1997). Delineation of relevant regions is imperative to consider for analyses of variation patterns 

in deer hunter behavior and harvest at broad spatial scales to inform broad management goals. 

Rather than analyzing trends over biologically arbitrary boundaries such as counties, results are 

more relevant and useful to coarse-scale management planning if regions contain areas that 

display similarities in ecological and sociocultural factors. Karns et al. (2016) used this method 

to propose deer management units (DMUs) over Ohio with the purpose of creating a framework 

that would facilitate effective regional deer population and harvest management. This study 

found that percent farmland, proportion of noncrop area within farmland and per capita deer 

permit sales at the county level worked best to delineate regions of homogeneous deer harvest 

dynamics. I investigated factors influencing hunter distribution and success within these potential 

DMUs to compare impactful factors between regions and develop conclusions which could be 

applied by managers at an appropriate scale. To my knowledge, this study is novel in that it 

evaluates harvest trends through a spatial framework based on factors relevant to game 

management. Future changes to harvest and game management grounded in these conclusions 

should improve in predictability and efficiency compared to those based on less relevant 

management boundaries.  

With the overall aim to investigate landscape factors that influence Ohio deer hunting, 

this project had three main objectives: 1) Identify factors impacting hunter distribution; 2) 

Identify factors influencing probability of hunter success; 3) Contrast results between proposed 

deer management units to draw conclusions at a regional level. I predicted that likelihood of 

hunter presence will decrease as distance to nearest road and slope increase. I also predicted that 

likelihood hunter presence will increase with amount of forest and in public land over private. 
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Regarding probability of hunter success, I predicted hunters will have a higher rate of success 

than their public land counterparts, though the strength of this trend will vary between DMUs. I 

expected increased forest and forest edge to increase hunter success in all cases, with stronger 

trends in DMUs where forest amount is lower and other cover types are more dominant. 

Candidate model sets informed by expert opinion and relevant literature were created to test a 

priori hypotheses regarding how geospatial characteristics influence hunting outcomes. 

Generally, these methods could inform and be applied to other geographic areas to investigate 

landscape-hunter relationships.  
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Methods 

Study Area 

  

Figure 2.1. Deer management units proposed by Karns et al. (2016) (top left). Areas designated 

as publicly owned lands outlined (top right). NLCD 2016 landcover including DMU outline 

(bottom).  

 

Landcover Type DMU 1 DMU 2 DMU 3 DMU 4 DMU 5 DMU 6 

% Low Urban 8.3 19.8 13.9 27.4 5.3 6.7 
% High Urban 1.7 4.4 4.5 7.7 0.6 0.8 

% Forest 8.4 38.3 24.0 27.4 58.0 66.8 
% Shrub  0.0 0.5 0.2 0.1 0.9 0.9 

% Herbaceous  0.4 0.9 0.3 0.4 1.2 1.0 
% Hay/Pasture 4.5 18.7 21.3 14.4 18.2 18.9 

% Crop 75.0 12.7 34.8 22.0 15.5 4.1 

Table 2.1. Percentage cells belonging to each relevant landcover class within each of the 6 

proposed deer management units in Ohio.  
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This project used hunter survey data from all 6 of Ohio’s proposed deer management 

units (Karns et al. 2016) (Figure 2.1). Land use in DMU 1 consisted heavily of cropland. DMU 2 

was characterized by large pockets of urban areas as Cleveland is within this unit, while also 

including a mix of agricultural and some forested areas. DMU 3 also has a pocket of urban area 

as it includes Columbus, though it is mostly agricultural land outside the city. DMU 4 included 

Cincinnati, and so consisted mostly of urban area and some agricultural pockets. DMU 5 was 

made up of forest and agricultural land, it acts as a gradient between the mode single-type 

dominated DMUs. DMU 6 was largely forested with areas of crop use. Past glaciation in western 

Ohio has caused differences in topography where the western side is largely flat and the eastern 

side consists of much greater topographic variation. 

Data Collection 

In July-August of 2014 95,000 Ohio hunters were asked via email to complete an online 

survey that requested several fields of data concerning a single hunting event. Hunters were 

allowed to delineate hunt location by point or rectangle, if the latter was used the center point of 

the resulting polygon was used during data collection. Respondents were asked whether the hunt 

was successful, which county it occurred in and year in which it occurred with options 2011-

2012, 2012-2013 and 2013-2014. About 10,000 surveys were returned. Throughout the state 

there were a total of 4,853 successful hunts and 6,119 unsuccessful hunts. To analyze patterns in 

hunter distribution within a DMU, random points were created to match the total number of data 

points within the region. Random point locations were only bounded by the boundaries of the 

DMU in order to test whether hunters distributed themselves differently than a random 

distribution of points.  
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I obtained digital elevation model rasters from the Ohio Geographically Referenced 

Information Program (OGRIP) and converted to degree slope using ArcMap Slope tool. Road 

centerline data was also obtained from OGRIP through their Local Based Response System 

(LBRS) project. LBRS contains centerlines for all public and private roads, including paved and 

unfinished gravel roads. Centerlines were merged into a single polyline file at the DMU level for 

analysis. ArcMap’s near tool was applied to the merged centerlines to calculate the distance from 

each data point to the nearest feature. Polygon files outlining publicly owned lands were 

obtained from Ohio Division of Wildlife (ODW). Parcel shapefiles for each county were 

downloaded from the county auditor’s website or map office. Parcel shapefiles were merged and 

converted to raster by parcel size to estimate mean parcel sizes. Landcover data were obtained 

from NLCD (2016). I reclassified NLCD to reduce the number of classes by combining them or 

leaving out those not relevant to the study area (Table 2.2). Distance to nearest road was 

calculated for each point location using the Near Distance tool (ArcMap). I used the 

‘landscapemetrics’ package (Hesselbarth et al. 2019) in R software to calculate landscape 

metrics surrounding each data point. I calculated metrics describing percent landcover and 

amount of edge per landcover type within a buffer. Slope, mean parcel size, and landscape 

metrics were collected at 3 spatial scales (100m, 200m, 300m) to find which best suited the data 

and explained hunter responses. To decide between the 3 spatial scales, I applied initial data 

exploration by creating single variable models using each buffer size and comparing variation 

explained and variable significance. Following this initial exploration, I found that the 300m 

buffer was most appropriate and applied this to the model creation. Principal component analysis 

was applied to the percent land cover type variables to reduce the dimensionality and 

intercorrelation these data. 
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NLCD Classification  New Classification  

Developed, Open Space 

Developed, Low Intensity  

Low Urban 

Developed, Medium Intensity  
Developed, High Intensity  

High Urban  

Barren Land  Barren Land 

Deciduous Forest 
Evergreen Forest 

Mixed Forest 

 
Forest 

Shrub/scrub Shrub 

Herbaceous  Herbaceous 
Hay/pasture Hay/pasture 

Cultivated crops Cultivated crops 

Woody wetlands Woody wetlands 
Emergent herbaceous  

wetlands 

Emergent herbaceous  

wetlands 

Table 2.2. Reclassification of NLCD 2016 class types to those which were used to model effects on 

hunter distribution and success and white-tailed deer habitat suitability over proposed DMUs for Ohio. 

 

I also created a habitat suitability model (HSI) for white-tailed deer based on available 

literature (Roseberry and Woolf 1998, Miranda and Porter 2003) which was then adapted to our 

goals and study area by incorporating expert opinion. I added the food and cover coefficients 

(Table 2.3) as separate fields in an NLCD raster before exporting those fields into two new 

rasters, each showing either food value coefficients or cover value coefficients. I then used the 

focal statistics tool to find the maximum coefficient values within a functional distance to 

account for high quality resources available for use in the surrounding landscape. A 500 m buffer 

was applied to food value coefficients while a 200 m buffer was applied to cover value 

coefficients (Roseberry and Woolf 1998). The final HSI was calculated for each value by 

averaging all 4 values.  
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Landcover  
Class 

Food Coefficient Cover Coefficient 

Developed Open 0.7 0.6 

Developed Low 0.4 0.4 

Developed Medium 0.2 0.2 

Deciduous Forest 0.4 1.0 

Evergreen Forest 0.1 1.0 

Mixed Forest 0.3 1.0 

Shrubland 0.5 1.0 

Herbaceous 0.5 0.3 

Pasture/Hay 0.6 0.1 

Cultivated Crop 0.5 0.4 

Woody Wetland 0.3 0.2 

Emergent Herbaceous  
Wetland 

 
0.0 

 
0.7 

Table 2.3. Coefficients used to assign value for each food and cover metric in the HSI model.  

 

Modeling Approach  

I fit logistic regression models to predict probability of hunter presence and success given 

certain data points. There are 3 general classes of factors known to influence deer hunter 

distribution and success, each of which can be represented with multiple variables. As a result, I 

decided the number of variables to be tested were too complex to be tested within a single 

candidate model set. Candidate model sets were created for 3 separate categories of predictors 

including habitat characteristics, land accessibility to hunters, and physical difficulty. Models 

were constructed a priori according to hypotheses developed based on review of literature and 

expert opinion. I used delta AIC value >2 to identify the highest-ranked models. In the case of an 

AIC < 2, I identified the simpler model as highest ranked. After comparing models within a 

category, the top model was added to the final candidate model set and combined into a single 

model. Interactions not included in the category models which were predicted to have an impact 
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were then added to the combined model. A quadratic term was tested using likelihood ratio test 

on variables slope, distance to road, parcel size, and all principal components to account for non-

linear relationships. If deemed significant by this test, the quadratic term was added to the 

candidate model sets in addition to the single term.  

The access candidate model set was the same for distribution (Table 2.4) and success 

(Table 2.5). I predicted that hunters would be more likely to use public land due to ease of 

access, despite lower probability of success on public land due to deer avoidance of areas where 

hunters are dense. Lovely et al. (2013) found that percentage of land hunted increased with mean 

parcel size, while deer density seemed to increase at lower mean parcel sizes. To test these 

findings in this study, I added the mean parcel size to both candidate model sets. Physical 

exertion to reach a hunting location was accounted for in the difficulty category, since I predicted 

that hunters are inclined to hunt in areas closer to roads and at a lower slope (Diefenbach et al. 

2005, Rowland et al. 2021). An interaction was added between slope and road for the distribution 

model as hunters may be less inclined to walk farther as slope increases (Table 2.4). Percent 

landcover and edge metrics were included to investigate how habitat influences hunter 

distribution and success. Since we know white-tailed deer populations vary with habitat 

characteristics, I examined whether land cover composition influence hunter distribution and 

success. A similar question was investigated with HSI values in the success models, though in a 

way that attempted to directly compare deer habitat and probability of hunting success (Table 

2.5). The final hunter distribution candidate model set included an additional interaction to test 

whether hunter distance to road changes with amount of forest cover as this represents a cover 

type which is physically more difficult to walk through and could influence the distance hunters 

walk (Table 2.4). The interaction added in the final set of the hunter success portion aimed to test 
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whether the influence of forest land cover changes on public land. I predicted the effect of forest 

percent on probability of success would be lower on public than private land due to lower deer 

densities (Table 2.5). 

Category Model Sets 

Access PublicLand 

 PublicLand+MeanParcelSize 
Difficulty Slope 

 RoadDist 

 Slope+RoadDist 
 Slope+RoadDist+Slope:RoadDist 

Landscape Metrics PC1+PC2+PC3 

 PC1+PC2+PC3+ForestEdge 

Final TopModels 
 TopModels+PCb:RoadDist 

a PC refers to principial components describing percentage landcover type over a 300m buffer 
b Specific principal component will be chosen based on which demonstrates a gradient to forest 
Table 2.4. Candidate model sets used to fit hunter distribution models using hunter survey data related to 

hunts which occurred between 2011-2014 over each of 6 proposed DMUs in Ohio.  

 

Category Model Sets 

Access PublicLand 

 PublicLand+MeanParcelSize 

Difficulty Slope 

 RoadDist 
 Slope+RoadDist 

Landscape Metrics HSI 

 PC1+PC2+PC3 
 PC1+PC2+PC3+ForestEdge 

 PC1+PC2+PC3+ForestEdge+CropEdge 

Final TopModels 
 TopModels+PCb:PublicLand 

a PC refers to principial components describing percentage landcover type over a 300m buffer 
b Specific principal component will be chosen based on which demonstrates a gradient to forest 

Table 2.5. Candidate model sets used to fit hunter success models using hunter survey data related to 

hunts which occurred between 2011-2014 over each of 6 proposed DMUs in Ohio. Results 

Results 

I used hunter data from all 6 DMUs to create models predicting hunter distribution and 

success (Table 2.6).  
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 DMU 1 DMU 2 DMU 3 DMU 4 DMU 5 DMU 6 

Harvest 1054 980 498 294 324 1703 

Non-Harvest 1437 1187 601 342 402 2150 

Random 2491 2167 1099 636 726 3853 

Table 2.6. Number of data points located in each proposed Ohio DMU in the hunter survey data 

concerning hunts which occurred between 2011-2014, which was used to create the distribution 

and success models.  

 

DMU Slope 
(º) 

Distance 
to Road 

(m) 

Parcel Size 
(km^2) 

% 
Forest 

% 
Low 

Urban 

% High 
Urban 

% 
Herbaceous 

% 
Pasture 

% Crop 

1 1.10 292.92 0.41 16.34 6.71 1.00 0.45 5.97 64.73  

(0.01 - 

13.92) 

(0.04 - 

2296.73) 

(0.001 - 

17.15) 

(0 – 

100) (0 – 100) 

(0  - 

91.64) (0 - 26.52) 

(0 - 

84.71) 

(0 – 

100) 

2 3.59 239.60 0.50 44.12 14.61 2.82 0.89 18.37 11.88  

(0.01 - 

27.44) 

(0.06 - 

1181.11) 

(0.0005 - 

30.36) 

(0 – 

100) (0 – 100) 

(0 - 

95.25) (0 - 54.89) 

(0 - 

93.95) 

(0 – 

100) 

3 2.93 239.96 0.31 31.04 10.54 2.45 0.25 20.16 32.65  

(0.03 - 

21.87) 

(0.06 - 

1002.40) 

(0.001 - 

18.42) 

(0 – 

100) 

(0 - 

99.04) 

(0 - 

95.19) (0 - 15.19) 

(0 – 

100) 

(0 – 

100) 

4 3.42 219.54 0.31 38.70 19.76 4.79 0.39 14.05 20.21  

(0.05 - 

24.12) 

(0.19 - 

1086.57) 

(0.0005 - 

14.01) 

(0 – 

100) 

(0 - 

98.41) 

(0 - 

97.74) (0-19.85) 

(0 - 

98.42) 

(0 – 

100) 

5 7.01 322.75 1.06 62.15 5.02 0.39 1.12 17.62 11.55  

(0.01 - 

29.64) 

(0.45 - 

1610.24) 

(0.003 - 

35.01) 

(0 – 

100) 

(0 - 

84.24) 

(0 - 

43.99) (0 - 72.79) 

(0 - 

95.21) 

(0 – 

100) 

6 9.32 265.39 0.80 70.10 6.13 0.48 0.78 17.15 3.30  

(0.02 - 

32.35) 

(0.02 - 

1810.47) 

(0.001 - 

42.87) 

(0 – 

100) 

(0 - 

97.80) 

(0 - 

88.92) (0 - 99.73) 

(0 - 

99.68) 

(0 – 

100) 

Table 2.7. Means and (range) of covariates used to model hunter distribution and success from 

hunter survey data concerning hunts which occurred between 2011-2014.  

Distribution  

The top models for each category were supported with < 2 ΔAICc (Appendix F). 

Principal component analysis applied to the percent cover variables yielded 3 principal 

components to be tested in the candidate model sets (Appendix D) Overall, top models for each 

DMU were either the result of combining all variables from the category level top models or this 
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combination of models plus an interaction term between distance to road and the principal 

component corresponding to forest amount. These two top models were often within 2 ΔAICc of 

each other, in which case the simpler version was chosen as the final model (Appendix F). Public 

land, the three principal components, and slope variables were present in all 6 final models. 

Distance to road in was present in all final models except that of DMU 6. Total forest edge was 

included in models for DMUs 1, 3 and 5. Mean parcel size was only included in the final model 

for DMU 2. Final models for DMUs 2 and 3 included an interaction between slope and distance 

to road. Public land demonstrated the highest odds ratio in every model, ranging from 1.7704 to 

10.492 (Table 2.8) and was significant (P<0.01) for all DMU models except DMU 3. Principal 

components demonstrating a gradient towards increasing forest percentage had consistently 

positive relationships with hunter presence, while principal components which decreased as 

forest percentage increased had a negative effect on hunter presence (Table 2.8, Figure 2.3).  

The top model for DMU 1 encompassing the agricultural landscape of northwestern and 

west-central Ohio (wi = 0.498) included 11 variables. Public land had a positive effect on use (β 

= 2.3506, P < 0.0001). Principal component 1 accounted for 29% of the variation (Appendix D) 

and represented the landscape shifting from forested area to more crop dominated. Probability of 

hunter use was negatively associated with principal component 1 (β = -0.4432, P < 0.0001) 

(Table 2.8).  Principal component 2 explained 20% of the variation and represented a gradient 

from higher forested area towards urban dominated. Hunter use had a negative relationship with 

principal component 2 (β = -0.3608, P < 0.0001). Principal component 3 corresponded to a shift 

towards areas with higher shrubby and herbaceous vegetation and explained 15% of the 

variation. There was a positive relationship between principal component 3 and hunter use (β = 

0.0769, P = 0.0419). Quadratic terms were included for principal components 1 (β = -0.1726, P 
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<0.0001) and 2 (β = 0.0306, P =0.0425) in DMU 1. Slope was included in the model yet had no 

significant effect on use (β = 0.0018, P = 0.9749). Distance to road had a positive effect on use 

(β = 0.0019, P < 0.0001) and was included as a quadratic term. Amount of forest edge showed a 

positive relationship with use (β = 0.0003, P < 0.0001).  

The top model for DMU 2 encompassing the unglaciated mixed urban and forest 

landscape of northeastern and east central Ohio (wi = 0.729) included 13 variables. Public land 

had a positive effect on use (β = 0.7324, P < 0.0001). Principal component 1 accounted for 26% 

if the variation (Appendix D) and corresponded to a gradient from urban landscapes to more 

forested areas. Principal component had a positive effect on hunter use (β = 0.2598, P < 0.0001) 

(Table 2.8). Principal component 2 explained 21% of the variation and represented a shift from 

pasture and crop dominated landscapes towards more forested land. Hunter use increased with 

principal component 2 (β = 0.1283, P = 0.0011). Principal component 3 accounted for 15% of 

the variation and demonstrated a gradient from cropland to higher pasture land. This component 

did not have a significant impact on hunter use (β = -0.0077, P =0.8221). Quadratic terms were 

included for principal components 1 (β = -0.1181, P <0.0001) and 2 (β = -0.0825, P = 0.0003) in 

DMU 2. Slope did not influence use (β = 0.0214, P = 0.377). Distance to road increased 

probability of use (β = 0.0015, P = 0.0044) and was also included as a quadratic term. Mean 

parcel size (β < 0.0001, P = 0.2849) and the interaction between slope and distance to road (β = 

<0.0001, P = 0.8677) were not significant predictors of use.  

The top model identified for DMU 3 the mixed forest, urban and agricultural landscape 

of central Ohio included 10 variables (wi = 0.431). Public land had a positive, yet not statistically 

significant influence on hunter use (β = 0.6114, P = 0.0595). Principal component 1 in DMU 3 

accounted for 25% of the variation (Appendix D) and constituted a change in the landscape as it 
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shifted from urban areas to cropland. There was no significant relationship between hunter use 

and principal component 1 (β = 0.1537, P = 0.15). Principal component 2 demonstrated a 

landscape gradient from crop dominated to forested areas and explained 22% of the variation. 

There was a positive relationship between hunter use and principal component 2 (β = 0.2602, P < 

0.0001) (Table 2.8). Principal component 3 explained 17% of the variation and represented a 

shift in the landscape from areas with high amount of pasture towards forested land. Principal 

component 3 did not have a significant effect on hunter use (β = -0.0185, P = 0.4957). Hunter use 

increased as amount of forest edge (β = 0.0002, P = 0.0041). Distance to nearest road did not 

have a strong impact on use (β = 0.0015, P = 0.0848) increased. The interaction between slope 

and distance to road was insignificant (β = -0.0001, P = 0.3703).  

The top model for DMU 4 including the variable terrain and predominantly forested 

landscape of southeastern Ohio included 8 variables (wi = 0.349). Public land increased 

probability of use compared to private (β = 1.2918, P = 0.0009). Principal component 1 

represented a change in the landscape from forested to urban and accounted for 26% of the 

variation (Appendix D). Principal component 1 had a negative impact on hunter use (β = -0.572, 

P < 0.0001) (Table 2.8). Principal component 2 explained 21% of the variation and corresponded 

to a gradient from cropland to forested dominated. There was a positive relationship between 

principal component 1 and hunter use (β = 0.3544, P < 0.0001). A quadratic term for principal 

component 2 was also included in the final model (β = -0.0218, P = 0.6441). Principal component 

3 in DMU 4 accounted for 15% of the variation and represented a shift towards landscapes high 

in pasture area, though it did not impact hunter use (β = -0.0094, P = 0.8962). Percent slope did 

not impact hunter use (β = 0.0205, P =0.3211). Distance from nearest road (β = 0.0031, P = 

0.0033) increased use probability, distance to road was also included as a quadratic term.  
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The top model for DMU 5 encompassing the mixed urban-agriculture-forested landscape 

of south-central Ohio included 9 variables (wi = 0.719). Public land resulted in increased use 

probability (β = 0.6723, P = 0.0002). Principal component 1 represented a shift in the landscape 

from forested areas to pasture and crop dominated. This component accounted for 31% of the 

variation (Appendix D) and demonstrated a negative relationship with hunter use (β = -0.1535, P 

= 0.0035). Principal component 2 accounted for 19% of the variation and described a gradient 

from urban areas to cropland. There was a negative relationship between hunter use and principal 

component 2 (β = -0.1109, P = 0.0293). Principal component 3 corresponded to a shift towards 

areas higher in shrubby and herbaceous vegetation. This principal component accounted for 15% 

of the variation, though it did not significantly impact hunter use (β = -0.0948, P = 0.0826). 

Slope did not impact use either (β = 0.0149, P = 0.6451). Amount of forest edge (β = 0.0002, P = 

0.003) and distance from nearest road (β = 0.0021, P = 0.0016) increased use probability, 

distance to road was also included as a quadratic term.  

Lastly, the top model for DMU 6 DMU which encompassed the mixed forest and urban 

landscape of southwestern Ohio included 8 variables (wi = 1.0). Public land increased probability 

of hunter use (β = 0.6669, P < 0.0001). Principal component 1 accounted for 30% (Appendix D) 

of the variation and demonstrated a shift in the landscape from areas with high amounts of 

pasture towards forested areas. The relationship between principal component 1 and hunter use 

was no significant (β = 0.0396, P = 0.1228). Principal component 2 accounted for 19% of the 

variation and described a landscape shifting towards urban areas, but did not have a significant 

effect on hunter use (β = 0.0177, P = 0.5855). Principal component 3 explained 16% of the 

variation and corresponded to a gradient towards increasing amounts of shrubby and herbaceous 
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vegetation. Principal component 3 had a negative impact on hunter use (β = -0.0969, P = 

0.0001). Slope did not impact use (β = 0.0150, P = 0.3179).
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Figure 2.2. Odd Ratios with confidence interval bars for variables included in top models predicting hunter distribution over all 6 

proposed DMUs in Ohio using hunter survey data concerning hunts which occurred between 2011-2014.
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DMU Covariatea βb Odds ratio SEc Pd 

1 (Intercept) -0.4588 0.6321 0.0997 <0.0001 

 PublicLand 2.3506 10.492 0.3731 <0.0001 

 PC1 -0.4432 0.642 0.0483 <0.0001 

 I(PC1^2) -0.1726 0.8415 0.0211 <0.0001 

 PC2 -0.3608 0.6971 0.0632 <0.0001 

 I(PC2^2) 0.0306 1.031 0.0151 0.0425 

 PC3 0.0769 1.08 0.0378 0.0419 

 Slope 0.0018 1.0018 0.0558 0.9749 

 I(Slope^2) 0.0002 1.0002 0.0071 0.9765 

 RoadDist 0.0019 1.0019 0.0003 <0.0001 

 I(RoadDist^2) <0.0001 1.0000 <0.0001 0.0057 

 ForestEdge 0.0003 1.0003 0.0001 <0.0001 

2 (Intercept) 0.0382 1.0387 0.104 0.7148 

 PublicLand 0.7324 2.0801 0.2242 0.0011 

 PC1 0.2598 1.2967 0.0564 <0.0001 

 I(PC1^2) -0.1181 0.8886 0.0244 <0.0001 

 PC2 0.1283 1.1369 0.0392 0.0011 

 I(PC2^2) -0.0825 0.9209 0.0226 0.0003 

 PC3 -0.0077 0.9923 0.0342 0.8221 

 Slope 0.0214 1.0216 0.0242 0.377 

 I(Slope^2) -0.0019 0.9981 0.0013 0.1405 

 RoadDist 0.0015 1.0015 0.0005 0.0044 

 I(RoadDist^2) <0.0001 1.0000 <0.0001 0.0013 

 Slope:RoadDist <0.0001 1.0000 <0.0001 0.8677 

 MeanParcelSize <0.0001 1.0000 <0.0001 0.2849 

 I(MeanParcelSize^2) <0.0001 1.0000 <0.0001 0.4194 

3 (Intercept) -0.2926 0.7463 0.1656 0.0772 

 PublicLand 0.6114 1.843 0.3244 0.0595 

 PC1 0.1537 1.1662 0.1068 0.15 

 I(PC1^2) -0.0335 0.967 0.0293 0.2517 

 PC2 0.2602 1.2971 0.0552 <0.0001 

 PC3 0.2210 1.2473 0.0469 <0.0001 

 Slope -0.0185 0.9816 0.0272 0.4957 

 ForestEdge 0.0002 1.0002 0.0002 0.0041 

 RoadDist 0.0015 1.0015 0.0009 0.0848 

 I(RoadDist^2) <0.0001 1.0000 <0.0001 0.0603 

 Slope:RoadDist -0.0001 0.9999 0.0001 0.3703 

          Continued 
aPC refers to a principal component based on percentage landcover type. The number 

 indicates which component it is.  

 b Variable coefficients c Standard error d P-value 

Table 2.8. Model regression summary for top models predicting hunter distribution over 

all 6 proposed DMUs in Ohio using hunter survey data concerning hunts which occurred 

between 2011-2014. 
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Table 2.8 Continued  

DMU Covariatea βb Odds 

ratio 

SEc Pd 

4 (Intercept) -0.4513 0.6368 0.1761 0.0104 

 PublicLand 1.2918 3.6395 0.3883 0.0009 

 PC1 -0.572 0.5644 0.0683 <0.0001 

 PC2 0.3544 1.4254 0.0689 <0.0001 

 I(PC2^2) -0.0218 0.9784 0.0472 0.6441 

 PC3 -0.0094 0.9906 0.0724 0.8962 

 Slope 0.0205 1.0207 0.0206 0.3211 

 RoadDist 0.0031 1.0031 0.0011 0.0033 

 I(RoadDist^2) <0.0001 1.0000 <0.0001 0.0038 

5 (Intercept) -0.5988 0.5495 0.2251 0.0078 

 PublicLand 0.6723 1.9587 0.1786 0.0002 

 PC1 -0.1535 0.8577 0.0526 0.0035 

 PC2 -0.1109 0.8951 0.0509 0.0293 

 PC3 -0.0948 0.9096 0.0546 0.0826 

 Slope 0.0149 1.015 0.0324 0.6451 

 I(Slope^2) -0.0020 0.998 0.0014 0.1534 

 ForestTE300 0.0002 1.0002 0.0002 0.003 

 RoadDist 0.0021 1.0021 0.0007 0.0016 

 I(RoadDist^2) <0.0001 1.0000 <0.0001 0.0008 

6 (Intercept) 0.0086 1.0086 0.0847 0.9194 

 PublicLand 0.6669 1.9482 0.0679 <0.0001 

 PC1 0.0396 1.0403 0.0256 0.1228 

 I(PC1^2) -0.0651 0.9369 0.0127 <0.0001 

 PC2 0.0177 1.0179 0.0325 0.5855 

 I(PC2^2) 0.0110 1.011 0.0058 0.0568 

 PC3 -0.0969 0.9076 0.0241 0.0001 

 Slope 0.0150 1.0151 0.0151 0.3179 

 I(Slope^2) -0.0012 0.9988 0.0006 0.0561 
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Figure 2.3. Graphed relationship between probability of hunter use and most significant 

variables which included a quadratic term described on X axis. Models were created using 

survey data from Ohio deer hunters concerning hunts which occurred during 2011-2014 seasons 

and random points, final models chosen based on AIC. Shaded regions represent 95% confidence 

intervals.  

 

Hunter Success 

Principal components analysis was also applied to these datasets to reduce dimensionality 

and intercorrelation of percentage landcover type data where the result was 3 principal 

components per DMU (Appendix E). Certain category level models were not separated from the 

null model by at least 2 ΔAICc (Appendix G), in which case these were not tested in the final 

model. Final models were supported by a ΔAICc>2 in every case. Models which predict hunter 

success were created using hunter survey data showing successful and unsuccessful hunting 

attempts (Table 2.6). Public land is the only variable to be included in top models for all DMUs 

(Table 2.9, Figure 2.4). Public land had the strongest negative effect on success probability in all 

models with odds ratios between 0.2805 and 0.6357 and was significant in every model 
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(P<0.01). Principal components were included in 4 out of 6 top models where HSI replaced them 

in DMU 3 and no landscape metrics were included in DMU 5.  

The top model for DMU 1 encompassing the agricultural landscape of northwestern and 

west-central Ohio included 6 variables (wi = 0.724). Public land decreased probability of success 

(β = -1.0009, P < 0.0001) (Table 2.9). Principal component 1 in DMU 1 accounted for 27% of 

the variation (Appendix E) and represented a change from crop dominated landscapes towards 

forested areas. There was a positive relationship between principal component 1 and hunter 

success (β = 0.1002, P = 0.0035). Principal component 2 explained 20% of the variation and 

corresponded to a gradient from urban areas towards forested land. The relationship between 

hunter success and principal component 2 was statistically insignificant (β = 0.0802, P = 

0.2186). Principal component 3 accounted for 15% of the variation and demonstrated a shift 

from shrubby and herbaceous vegetation towards landscapes with higher pasture area. There was 

a positive relationship between principal component 3 and hunter success (β = 0.1106, P = 

0.0123). Distance to road did not impact success (β = 0.0003, P = 0.1137).  

The top model selected for DMU 2 encompassing the unglaciated mixed urban and forest 

landscape of northeastern and east central Ohio included 7 variables (wi = 0.676). Public land 

decreased probability of success compared to private land (β = -1.1596, P < 0.0001). Principal 

component 1 in DMU 2 accounted for 24% of the variation (Appendix E) and constituted a shift 

from forested are towards pasture and crop dominated land. Principal component 1 did not have 

a significant impact on hunter success (β = -0.0006, P = 0.9906). Principal component 2 

explained 21% of the variation and described a shift from urban areas towards pasture and crop 

dominated lands. There was a negative relationship between principal component 2 and hunter 

success (β = -0.1362, P = 0.013). Principal component 3 accounted for 15% of the variation and 
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represented a gradient from croplands towards pasture dominated areas, though it did not 

significantly impact success (β = -0.0527, P = 0.2478). Slope increased probability of success (β 

= 0.1043, P = 0.0008) and it was included as a quadratic term.  

The top model for DMU 3 the mixed forest, urban and agricultural landscape of central 

Ohio included 3 variables (wi = 0.629). Public land decreased probability of hunt success (β = -

0.8245, P = 0.0308). Mean parcel size did not affect success probability (β = <0.0001, P = 

0.1276). Habitat suitability for deer had a positive impact on success (β = 1.4774, P = 0.0255) 

and was only included in this DMU’s final model.  

The top model for DMU 4 including the variable terrain and predominantly forested 

landscape of southeastern Ohio included 8 variables (wi = 0.699). Public land decreased 

probability of success (β = -1.2711, P = 0.0004). Principal component 1 in DMU 4 explained 

25% of the variation (Appendix E) and represented a shift from forested landscapes towards 

croplands. Principal component 2 accounted for 23% of the variation and demonstrated a 

gradient from urban areas towards croplands. Principal component 3 explained 16% and 

described a gradient from pasture to crop dominated landscapes. Principal components 1 (β = -

0.0896, P = 0.3289), 2 (β = 0.1383, P = 0.1152) and 3 (β = 0.1357, P = 0.1402) did not have 

significant impacts on hunter success in DMU 4 (Table 2.9). Crop edge had a negative impact on 

success (β = -0.0006, P = 0.0001). Effects on success from forest edge (β = <0.0001, P = 0.743), 

distance to road (β = -0.0007, P = 0.1861) or slope (β = 0.0021, P = 0.9302) were not found.  

The model for DMU 5 encompassing the mixed urban-agriculture-forested landscape of 

south-central Ohio only included 2 variables (wi = 1.0). Public land had a negative impact on 

success (β = -0.7873, P = 0.0010), while mean parcel size did not have a strong impact (β = 

<0.0001, P = 0.0473).  
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Finally, the top model for DMU 6 DMU which encompassed the mixed forest and urban 

landscape of southwestern Ohio included 8 variables (wi = 0.64). Public land decreased 

probability of success compared to private land hunters (β = -0.4531, P < 0.0001) (Table 2.9). 

Principal component 1 explained 30% of the variation (Appendix E) and described a shift from 

forested landscapes towards those with more pasture area. Principal component 1 did not 

significantly impact hunter success (β = -0.0274, P = 0.4226). Principal component 2 explained 

20% of the variation and represented a gradient away from more urban landscapes. There was a 

positive relationship between principal component 2 and hunter success (β = 0.0996, P = 

0.0360). Principal component 3 accounted for 16% of the variation and described a shift towards 

areas with more shrubby and herbaceous vegetation. Principal component 3 was associated with 

a decrease in hunter success (β = -0.0852, P = 0.0134). Forest edge (β = 0.0004, P = 0.0986) and 

mean parcel size (β < 0.0001, P = 0.0003) did not strongly impact success 
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Figure 2.4. Odd Ratios including confidence interval bars for variables included in top models predicting hunter success probability 

over all 6 proposed DMUs in Ohio using hunter survey data concerning hunts which occurred between 2011-2014.  
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DMU Covariatea βb Odds ratio SEc Pd 

1 (Intercept) -0.3528 0.7027 0.0733 <0.0001 

 PublicLand -1.0009 0.3676 0.1844 <0.0001 

 PC1 0.1002 1.1054 0.0344 0.0035 

 PC2 0.0802 1.0835 0.0652 0.2186 

 I(PC2^2) 0.0078 1.0079 0.0075 0.2996 

 PC3 0.1106 1.1169 0.0442 0.0123 

 RoadDist 0.0003 1.0003 0.0002 0.1137 

2 (Intercept) -0.3280 0.7204 0.081 0.0001 

 PublicLand -1.1596 0.3136 0.2178 <0.0001 

 PC1 -0.0006 0.9994 0.0474 0.9906 

 PC2 -0.1362 0.8727 0.0548 0.013 

 I(PC2^2) -0.0336 0.9669 0.0172 0.0499 

 PC3 -0.0527 0.9486 0.0456 0.2478 

 Slope 0.1043 1.1099 0.0311 0.0008 

 I(Slope^2) -0.0048 0.9952 0.0019 0.0135 

3 (Intercept) -1.0941 0.3349 0.4551 0.0162 

 PublicLand -0.8245 0.4384 0.3818 0.0308 

 MeanParcelSize <0.0001 1 <0.0001 0.1276 

 HSI 1.4774 4.3817 0.6614 0.0255 

4 (Intercept) 0.4986 1.6464 0.2918 0.0875 

 PublicLand -1.2711 0.2805 0.3579 0.0004 

 PC1 -0.0896 0.9143 0.0917 0.3289 

 PC2 0.1383 1.1483 0.0878 0.1152 

 PC3 0.1357 1.1454 0.092 0.1402 

 ForestEdge <0.0001 1 0.0004 0.743 

 CropEdge -0.0006 0.9994 0.0001 0.0001 

 RoadDist -0.0007 0.9993 0.0005 0.1861 

 Slope 0.0021 1.0021 0.0240 0.9302 

5 (Intercept) -0.0200 0.9802 0.0835 0.8106 

 PublicLand -0.7873 0.4551 0.2401 0.0010 

 MeanParcelSize <0.0001 1 <0.0001 0.0473 

6 (Intercept) -0.1970 0.8212 0.0800 0.0139 

 PublicLand -0.4531 0.6357 0.0970 <0.0001 

 PC1 -0.0274 0.973 0.0341 0.4226 

 PC2 0.0996 1.1047 0.0475 0.0360 

 I(PC2^2) 0.0180 1.0181 0.0077 0.0190 

 PC3 -0.0852 0.9183 0.0345 0.0134 

 ForestEdge 0.0004 1.0001 <0.0001 0.0986 

 MeanParcelSize <0.0001 1 <0.0001 0.0003 

 I(MeanParcelSize^2) <0.0001 1 <0.0001 0.0156 
aPC refers to a principal component based on percentage landcover type. The number indicates 

which component it is. b Variable coefficients c Standard error d P-value 
Table 2.9. Model regression summary for top models predicting hunter success over all 6 proposed 

DMUs in Ohio using hunter survey data concerning hunts which occurred between 2011-2014. 
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Figure 2.5. Graphed relationship between probability of hunter success and most significant variables 

which included a quadratic term described on X axis. Models were created using survey data from Ohio 

deer hunters concerning hunts which occurred during 2011-2014 seasons, final models chosen based on 

AIC. Shaded regions represent 95% confidence intervals. 

Discussion  

The effect of fine-scale environmental characteristics on larger-scale hunter distribution 

and success is an important, yet not well understood phenomenon in game harvest management. 

Though previous research has been conducted on the subject, to my knowledge past studies 

included a narrower set of environmental variables than I explored (e.g. Diefenbach et al. 2005, 

Lovely et al. 2013), data were often summarized at a much coarser (county level) scale (Foster et 

al. 1997) and comparisons were not made among regions with different landscape under a single 

state’s regulatory framework such as done here between deer management units (Lebel et al. 

2013, Rowland et al. 2021). 

Though distance to nearest road and slope both appeared in most of the top distribution 

models, these results deviated from our predictions and past literature (Diefenbach et al. 2005, 

Rowland et al. 2021). Hunters were more likely to be found farther away from the nearest road 

than closer to them in all DMUs except 6, where this variable did not appear in the top model. 
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Where Diefenbach et al. found hunters were 3 times less likely to hunt in a location for every 0.5 

km increase from the nearest road, I found that hunters were 2-4 times more likely for every 0.5 

km increase, depending on the relevant DMU. For each top model including distance to nearest 

road of any kind recorded by LBRS data, the variable was also included as a quadratic, meaning 

this effect levels off and this seems to occur between 400-1000 m. These results could mean that 

hunters in these DMUs believe there is a better chance of success by walking a length from the 

road, but success may be offset by the physical costs of walking past these threshold values. 

Though distance to road did appear in two of the final success models, I found no significant 

effects between this variable and chance of harvest. Such results do not concur with literature 

which found distance to roads to have a detrimental effect on harvest probability (Cooper et al. 

2002, Lebel et al. 2012, Rowland et al. 2021).  

Though none were statistically significant, variables indicating a positive relationship 

between probability of use and slope were found in every top model except for DMU 3, making 

these results different from the literature (Diefenbach et al. 2005, Rowland et al. 2021). These 

results also differ from my predictions as I thought hunters would choose not to go up steeper 

slopes due to physical exertion and perceived lack of relationship to chances of success. The 

difference between this finding and that of Diefenbach et al. (2005) could be due to large 

differences in slopes found between the study areas. Where the slope for my study area had a 

maximum of about 32º (Table 2.7), Diefenbach et al. (2005) study area located within 

Pennsylvania had slopes up to 61º. My findings suggest that hunters do not choose locations 

based on slope regardless of region in the state, which is unexpected as the east side of Ohio has 

much higher variation in topography than the west side. Also unexpectedly, DMU 2 
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demonstrated a positive relationship between slope and harvest success, which may indicate that 

there is some benefit (e.g. improved line of sight) to higher slopes in this unit. 

Hunters selected for forest dominated landscapes in every DMU. This finding aligns with 

the prediction that deer hunters seek out forested areas to hunt in, likely because it is seen as 

good deer habitat. This relationship presented itself in different, yet predictable ways depending 

on DMU general landcover abundance. For example, DMU 1 principal component 1 documented 

a shift in forest to crop dominated locations, meaning this gradient captured the most variation 

out of the landcover type combinations for the DMU. Top model results showed that increases in 

this principal component translated to decreases in hunter use (odds ratio=0.642, SE=0.0483). 

From these findings it can be inferred that, out of the tested landscape variables, hunters in DMU 

1 select most strongly for forest and against crop which is expected from a management unit 

where agricultural land is much more abundant than forested. Similarly, DMUs 2 and 4 first 

principal components described gradients between urban and forested areas and demonstrated a 

positive relationship with predicted use as the landscape became more forested (odds 

ratio=1.2967, SE=0.0564; odds ratio=-0.572, SE=0.0683 respectively). This demonstrates strong 

selection for forest and against urban landcover in the context of a DMU where urban land areas 

are more common than forest. Though DMU 6 principal component 1 did describe a gradient 

towards forest that increased positively with use this effect was not significant (P>0.05), likely 

because forested landcover is the most abundant in this unit.  

To my knowledge there is only one other study that investigated hunter distribution in 

relation to amount of forest cover. Rowland et al. (2021) found that both successful and 

unsuccessful mule deer (Odocoileus hemionus) hunters using rifles as their method of take were 

less likely to hunt in more forested areas. The results of my study indicated a significant positive 
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relationship between forest cover and success only in DMU 1, which may be a result of small 

forest pockets providing necessary cover resources to deer in a landscape almost entirely 

consisting of crop areas. Contrary to the literature which found that small, fragmented forest 

patches increase hunter success (Foster et al. 1997, Lebel et al. 2012), I found no evidence of 

this. Top models which included forest-related principal components showed positive, mostly 

insignificant relationships between use by successful hunters and percentage forest area. 

Additionally, amount of forest edge did not appear in most models and did not have significant 

effects when it did. 

Hunter success and habitat suitability index only appeared in the top model for DMU 3. 

HSI had a strong positive relationship with success in this unit, meaning better deer habitat 

translated to higher success chances in this DMU only. Principal components detailing trends in 

percentage landcover type generally outcompeted HSI in the success models. These findings 

may indicate that deer do not distribute themselves according to higher habitat quality in other 

DMUs or that my habitat suitability model is not accurate over most DMUs. 

Mean parcel size did not notably impact hunter distribution or success according to my 

results, which contradicts the literature. Lovely et al. (2013) found that percentage of land hunted 

increased with parcel size, while deer density increased at lower parcel sizes. Lovely et al. and 

Haren et al. (2005) concluded that increased development restricted hunter access and created 

refugia with higher deer populations where hunters were excluded. Though I did find that 

hunters avoided urban areas and DMU 2 success increased as crop areas shifted towards urban, I 

did not find conclusive evidence that more developed areas reduced harvest success rates.  

As predicted, this study found strong relationships between hunter distribution, success 

and whether they hunted on publicly owned land. Hunters in every DMU were more likely to 
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hunt on public land than private, while also being between 36-72% less likely to succeed on 

public land. These findings are in line with the hypotheses for this project and with general 

findings from Ohio Division of Wildlife deer hunter statistics. ODW reported 32% of resident 

hunters were on public land during the 2014-2015 season, though public land accounts for only 

4% of land area over the entire state (ODW 2016). In the same season, hunters on private land 

had a success rate of 28.3% compared to 13% on public land (ODW 2016). Interestingly, the 

strength of the relationship found in this study varied widely over the deer management units. 

According to the results, hunters in DMU 1 were 10.5 times more likely to hunt on public land 

than private, yet 0.37 times less likely to be successful (Table 2.8, Table 2.9). This intense 

selection for public land could be a result of the overwhelming agricultural landscape 

characterized by DMU 1 (Figure 2.1). In a landscape where hunting access to forested areas are 

hard to find and privately owned farming land is abundant, access to deer hunting locations may 

be limited to public land. DMU 4 hunters were 3.64 times as likely to use public land than 

private and 0.28 times as likely to succeed, which are the second and first highest odds ratios 

respectively, again in a region where forest cover is not the dominant cover type. On the other 

hand, DMUs 5 and 6 had lower odds ratios for use (1.9587, 1.9482 respectively) and higher for 

success (0.4551, 0.6357) in regions which consisted of relatively high amounts of forested area. 

Additional potential reasons for selecting public land could be ease of access, abundance of 

public land, and it could be seen as good deer habitat. Public land demonstrated the strongest 

relationship with success in models for all DMUs, though the relationships were negative in 

these models. Demonstrating strong, opposite effects in both distribution and success models, 

statewide selection for public land despite lower success probabilities demonstrates Ohio hunters 

are not distributing themselves in a way that provides the highest probability of success.  
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Identifying differences in model results between DMUs can provide valuable information 

for region-specific game management plans. I found important differences between which 

principal components were created for each DMU and the impact they had on hunter use 

depending on the overall regional landcover context. While all DMUs saw a clear trend of 

hunters selecting for locations with a higher percentage of forest, landcover types selected 

against and strength of selection for forest depended on the context of other abundant cover 

types. There was strong selection for forest areas by hunters in the least forested DMU, while the 

same effect was not statistically significant in the most forested DMU. Dominant landcover types 

other than forest were often selected against, for example crop being selected against in cropland 

dominated DMU 1 and urban areas being selected against in DMU 4, which had the highest 

urban area. Contrary to my predictions, I did not find significant differences between DMUs 

related to the impact of slope and distance to road on use, despite variation in their topography 

and dominant landcover types some of which are more difficult to walk through.  

In a few instances the effect of certain cover types on success changed by DMU. I found 

this to be true in DMU 2 where landscapes with more urban area increased success compared to 

DMU 6 where the same variable decreased success. Variation in effect of certain landcover types 

on success could result from changes in deer resource use between landscapes of different 

dominant cover types. Where urban areas may provide important refugia within the private land 

and crop dominated landscape of DMU 1, it may not provide enough food and cover resources 

compared to areas in the heavily forested DMU 6. DMU 1 was the only region where increased 

forest significantly increased success, which could also be due to important resources for deer in 

forested areas compared to the agricultural landscape. These findings exemplify how impacts of 

a single variable can change between deer management units. As with the distribution predictive 
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models, I concluded that these differences were due to the overall deer management unit 

landcover context and how this changes hunter and deer resources. Differences between DMUs 

based on landcover context likely also applies to the public land versus private land findings as 

well. Areas where forest land was abundant usually demonstrated less strong selection for public 

land than in DMUs where forest was less abundant. Results from the success models 

demonstrated more detrimental impacts of public land on harvest chances in DMUs where public 

land and forested land were relatively less abundant. This may be a result of many hunters 

converging on accessible public lands which consist of relatively rare, preferred cover types in 

these DMUs, resulting in lower success and potentially providing deer refugia outside of those 

areas.   

Future research on this subject could improve and elaborate on these findings in a few 

areas. The first would be adding in potentially important variables not explored here such as 

weather, hunter effort and CRP lands. Another study could investigate variables which influence 

success specifically on public lands to get an idea of why it seems to be a distinct factor in 

lowering hunting success. Lastly, it would be interesting to compare changes in factors 

influencing hunter distribution and success between different methods of take to tailor potential 

harvest management plans to those categories of hunters. 

Management Implications  

Spatial data extracted at a small scale seemed to influence hunter distribution and success 

differently depending on the regional landcover context. Information concerning hunter behavior 

and outcomes in response to spatial variables within certain DMUs can be used to devise region-

specific management plans to achieve region-specific deer harvest and population goals. Overall, 

incentivizing landowners to allow hunting on their property and facilitating access for hunters 
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may be the most effective strategy to increase hunter success, which could then increase 

satisfaction (Miller and Graefe 2001, Black and Jensen 2018) and, in turn, hunter participation 

(Mehmood et al. 2003). Identifying influences on hunter selection and success rates can be used 

to delineate areas where over and underharvest may occur. Areas of high selection and harvest 

rates may experience overharvest while the opposite is true for underharvest, which should be 

accounted for through targeted management plans based on agency goals. Management plans 

that take these results into account may have a better chance of sustaining harvest as a practical 

and effect technique to control deer populations while also generating various economic and 

social benefits. 
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Appendix A. Results of Northern Bobwhite Whistle Count Survey 

 

 

Figure A.1. Map of Northern Bobwhite quail survey done by Ohio department of natural 

resources (top). Each square represents a route in which 6 stops were surveyed. There is also a 

map which visualizes the results of this study over 2014-2017 (bottom). 



 93  

 

Appendix B. Distance to Cover Type Models Breeding 

Cover Typea Covariate βb SEc Pd 

ES Herb (Intercept) 0.1265 0.1537 0.4105  
ESWoody -0.0046 0.0010 0.0000  
Forest 0.0027 0.0005 0.0000  
RowCrop 0.0009 0.0009 0.3069  
PastureHay -0.0020 0.0003 0.0000  
ESWoody:PastureHay 0.0000 0.0000 0.0000  
Forest:RowCrop 0.0000 0.0000 0.0000  
Forest:PastureHay 0.0000 0.0000 0.0086 

ES Woody (Intercept) 0.2658 0.1806 0.1410  
ESHerb -0.0009 0.0006 0.1277  
Forest 0.0033 0.0006 0.0000  
RowCrop 0.0008 0.0019 0.6788  
PastureHay -0.0028 0.0005 0.0000  
ESHerb:RowCrop -0.0001 0.0000 0.0011  
ESHerb:PastureHay 0.0000 0.0000 0.0114  
Forest:RowCrop 0.0000 0.0000 0.0066  
Forest:PastureHay 0.0000 0.0000 0.0005  
RowCrop:PastureHay 0.0000 0.0000 0.0671 

Forest (Intercept) 1.7577 0.2337 0.0000  
ESHerb 0.0000 0.0010 0.9809  
ESWoody -0.0113 0.0021 0.0000  
RowCrop 0.0077 0.0020 0.0001  
PastureHay 0.0001 0.0007 0.9095  
ESHerb:ESWoody 0.0000 0.0000 0.1217  
ESHerb:RowCrop -0.0001 0.0000 0.0000  
ESHerb:PastureHay 0.0000 0.0000 0.0000  
ESWoody:PastureHay 0.0000 0.0000 0.0000  
RowCrop:PastureHay -0.0001 0.0000 0.0000 

           Continued 
a Cover type to which models will be applied b RC = row crop; PH = pasture/hay; F = forest; 

ESW = early successional woody; ESH = early successional herbaceous c k = number of 

parameters; AIC = Akaike’s information criteria; ΔAIC = difference between AIC for best model 

and model i; wi = Akaike weight  

Table B.1. Candidate model sets of factors influencing probability of use of cover by northern 

bobwhites radio-tracked on 4 study sites in southwestern Ohio during the breeding season (April-

September 2010- 2011). 

 

 

\ 
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Table B.1 Continued 

Cover Typea Covariate βb SEc Pd 

Pasture/Hay (Intercept) 1.7428 0.3448 0.0000  
ESHerb -0.0022 0.0010 0.0312  
ESWoody -0.0033 0.0018 0.0685  
RowCrop -0.0045 0.0041 0.2705  
Forest -0.0005 0.0010 0.6091  
ESHerb:RowCrop -0.0001 0.0000 0.0001  
ESWoody:RowCrop 0.0000 0.0000 0.0361  
RowCrop:Forest 0.0000 0.0000 0.0949 

Row Crop (Intercept) 0.5486 0.2058 0.0077  
ESHerb -0.0035 0.0007 0.0000  
ESWoody 0.0063 0.0013 0.0000  
PastureHay -0.0008 0.0004 0.0301  
Forest 0.0044 0.0007 0.0000  
ESHerb:PastureHay 0.0000 0.0000 0.0000  
ESHerb:Forest 0.0000 0.0000 0.1100  
ESWoody:Forest 0.0000 0.0000 0.0000 
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Appendix C. Distance to Cover Type Models Nonbreeding 

Cover Typea Covariate βb SEc Pd 

ES Herb (Intercept) 1.8815 0.1576 0.0000  
ESWoody -0.0095 0.0014 0.0000  
Forest -0.0009 0.0005 0.1023  
RowCrop -0.0133 0.0012 0.0000  
PastureHay -0.0014 0.0003 0.0001  
ESWoody:PastureHay 0.0000 0.0000 0.0005  
Forest:PastureHay 0.0000 0.0000 0.0077  
RowCrop:PastureHay 0.0000 0.0000 0.0460 

ES Woody (Intercept) 0.7279 0.1135 0.0000  
ESHerb 0.0003 0.0004 0.4150  
Forest 0.0014 0.0005 0.0028  
RowCrop -0.0056 0.0007 0.0000  
PastureHay -0.0020 0.0003 0.0000  
ESHerb:Forest 0.0000 0.0000 0.0000  
ESHerb:RowCrop 0.0000 0.0000 0.0293  
ESHerb:PastureHay 0.0000 0.0000 0.0219  
Forest:PastureHay 0.0000 0.0000 0.0050 

Forest (Intercept) 1.4349 0.1654 0.0000  
ESHerb 0.0017 0.0006 0.0021  
ESWoody -0.0024 0.0008 0.0016  
RowCrop 0.0061 0.0020 0.0027  
PastureHay 0.0005 0.0004 0.2299  
ESHerb:RowCrop -0.0001 0.0000 0.0000  
ESHerb:PastureHay 0.0000 0.0000 0.0000  
RowCrop:PastureHay -0.0001 0.0000 0.0000 

          Continued 
a Cover type to which models will be applied b RC = row crop; PH = pasture/hay; F = forest; 

ESW = early successional woody; ESH = early successional herbaceous c k = number of 

parameters; AIC = Akaike’s information criteria; ΔAIC = difference between AIC for best model 

and model i; wi = Akaike weight  

Table C.1. Candidate model sets of factors influencing probability of use of cover by northern 

bobwhites radio-tracked on 4 study sites in southwestern Ohio during the non-breeding season 

(October-March 2009- 2011). 
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Table C.1 Continued 

Cover Typea Covariate βb SEc Pd 

Pasture/Hay (Intercept) 0.7903 0.3004 0.0085  
ESHerb 0.0015 0.0010 0.1541  
ESWoody 0.0156 0.0028 0.0000  
RowCrop -0.0158 0.0042 0.0002  
Forest 0.0015 0.0013 0.2380  
ESHerb:ESWoody -0.0001 0.0000 0.0009  
ESHerb:RowCrop 0.0000 0.0000 0.1102  
ESWoody:Forest -0.0001 0.0000 0.0000  
RowCrop:Forest 0.0000 0.0000 0.0696 

Row Crop (Intercept) 1.6217 0.2808 0.0000  
ESHerb -0.0001 0.0006 0.8814  
ESWoody -0.0090 0.0025 0.0003  
PastureHay -0.0010 0.0007 0.1433  
Forest -0.0007 0.0010 0.4661  
ESHerb:ESWoody 0.0000 0.0000 0.0088  
ESHerb:PastureHay 0.0000 0.0000 0.0000  
ESWoody:PastureHay 0.0000 0.0000 0.1449  
ESWoody:Forest 0.0000 0.0000 0.0003  
PastureHay:Forest 0.0000 0.0000 0.0197 
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Appendix D. Hunter Distribution Models Principal Component Results 

DMU Principal 

Componen

t 

Low Urban High 

Urban 

Forest Shrub Herbaceou

s 

Pasture Crops 

1 1 -0.4401 -0.3720 -0.6414 -0.1082 -0.2016 -0.5394 0.9614  
2 0.7433 0.7431 -0.5285 -0.1012 0.0708 -0.3173 0.1007  
3 -0.0209 -0.0727 0.0561 0.5920 0.7443 -0.3219 0.0418 

2 1 -0.8150 -0.7453 0.7227 0.1661 0.0660 0.1660 -0.0208  
2 0.2707 0.2292 0.6091 0.1317 0.2314 -0.6094 -0.7323  
3 0.0778 -0.0214 -0.0064 -0.4697 0.0997 0.6701 -0.5938 

3 1 -0.8634 -0.7968 0.2226 0.0918 -0.2408 0.0754 0.5059  
2 -0.1086 -0.1977 0.8261 0.0457 0.1692 0.2840 -0.8304  
3 0.0019 0.1332 0.4632 0.2628 0.0926 -0.9297 0.1443 

4 1 0.8392 0.7574 -0.6029 -0.1530 -0.1686 -0.2908 -0.2221  
2 0.2130 0.0877 0.7032 0.2749 0.2687 -0.2683 -0.8469  
3 0.0328 -0.0104 -0.0710 -0.3038 -0.1847 0.8460 -0.4771 

5 1 0.5341 0.4037 -0.9436 -0.1982 -0.1598 0.6652 0.5538  
2 -0.6615 -0.7279 -0.2146 -0.0370 -0.1479 0.1926 0.5156  
3 0.0302 0.0614 -0.1930 0.4510 0.6799 -0.3835 0.4155 

6 1 -0.5020 -0.3611 0.9789 0.0044 -0.0887 -0.7292 -0.4360  
2 0.6705 0.7347 0.1637 -0.1325 -0.1569 -0.3914 -0.3278  
3 0.0377 0.1081 -0.0678 0.7350 0.7303 -0.1369 -0.1974 

Table D.1. Factor loadings resulting from principal component analysis of percentage landcover 

type over a 300m buffer used in the hunter distribution analysis for each proposed Ohio Deer 

Management Unit. 
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DMU Landcover 

Variable 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 

1 Low Urban -0.310 0.605 -0.021 -0.038 0.042 -0.674 -0.283  
High Urban -0.262 0.605 -0.072 -0.104 -0.156 0.714 -0.124  
Forest -0.452 -0.430 0.056 0.096 -0.562 0.003 -0.531  
Shrub -0.076 -0.082 0.587 -0.800 0.051 -0.006 -0.007  
Herbaceous -0.142 0.058 0.737 0.567 0.306 0.111 -0.069  
Pasture -0.380 -0.258 -0.319 -0.122 0.746 0.137 -0.311  
Cultivated Crops 0.678 0.082 0.041 -0.033 0.073 0.069 -0.722 

2 Low Urban -0.607 0.223 0.076 0.061 0.017 0.608 0.450  
High Urban -0.555 0.189 -0.021 0.049 0.050 -0.780 0.206  
Forest 0.538 0.501 -0.006 0.097 -0.232 -0.107 0.620  
Shrub 0.124 0.108 -0.461 0.294 0.817 0.039 0.067  
Herbaceous 0.049 0.191 0.098 -0.910 0.344 -0.007 0.075  
Pasture 0.124 -0.502 0.657 0.135 0.342 -0.092 0.397  
Cultivated Crops -0.015 -0.603 -0.583 -0.228 -0.200 -0.027 0.452 

3 Low Urban -0.651 -0.088 0.002 -0.008 0.070 -0.666 0.346  
High Urban -0.601 -0.160 0.122 0.003 0.168 0.729 0.197  
Forest 0.168 0.667 0.424 0.184 0.092 0.043 0.551  
Shrub 0.069 0.037 0.240 -0.951 0.174 -0.022 0.039  
Herbaceous -0.182 0.137 0.085 -0.161 -0.953 0.078 0.032  
Pasture 0.057 0.229 -0.850 -0.188 0.003 0.128 0.412  
Cultivated Crops 0.382 -0.670 0.132 0.034 -0.141 0.014 0.605 

4 Low Urban 0.621 0.175 0.032 0.034 0.014 0.606 0.463  
High Urban 0.560 0.072 -0.010 0.090 -0.007 -0.784 0.241  
Forest -0.446 0.577 -0.068 -0.340 -0.008 -0.127 0.575  
Shrub -0.113 0.226 -0.293 0.589 0.710 0.008 0.012  
Herbaceous -0.125 0.221 -0.178 0.644 -0.699 0.025 0.037  
Pasture -0.215 -0.220 0.816 0.337 0.088 -0.041 0.342  
Cultivated Crops -0.164 -0.695 -0.460 0.024 -0.023 -0.011 0.526 

5 Low Urban 0.364 -0.572 0.030 -0.006 0.042 -0.714 -0.167  
High Urban 0.275 -0.629 0.061 0.044 0.240 0.678 -0.078  
Forest -0.643 -0.185 -0.190 -0.060 0.123 -0.015 -0.705  
Shrub -0.135 -0.032 0.445 0.863 -0.171 -0.020 -0.091  
Herbaceous -0.109 -0.128 0.671 -0.480 -0.525 0.071 -0.101  
Pasture 0.453 0.166 -0.378 0.107 -0.603 0.156 -0.473  
Cultivated Crops 0.377 0.445 0.410 -0.086 0.507 -0.005 -0.476 

6 Low Urban -0.349 0.584 0.035 0.033 0.023 -0.693 -0.235  
High Urban -0.251 0.640 0.101 -0.136 -0.032 0.698 -0.103  
Forest 0.680 0.143 -0.063 -0.004 -0.028 0.015 -0.715  
Shrub 0.003 -0.115 0.686 -0.193 0.684 -0.014 -0.107  
Herbaceous -0.062 -0.137 0.681 0.087 -0.700 -0.028 -0.119  
Pasture -0.507 -0.341 -0.128 0.516 0.137 0.175 -0.543  
Cultivated Crops -0.303 -0.285 -0.184 -0.818 -0.143 -0.033 -0.319 

Table D.2. Eigen values resulting from principal component analysis of percentage landcover type over a 

300m buffer used in the hunter distribution analysis for each proposed Ohio Deer Management Unit. 
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DMU Metric PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 

1 Variance 2.011 1.510 1.019 0.976 0.844 0.532 0.107 

 Proportion Variance 0.287 0.216 0.146 0.139 0.121 0.076 0.015 

2 Variance 1.802 1.475 1.039 0.987 0.970 0.629 0.099 

 Proportion Variance 0.257 0.211 0.148 0.141 0.139 0.090 0.014 

3 Variance 1.758 1.534 1.195 0.986 0.965 0.526 0.036 

 Proportion Variance 0.251 0.219 0.171 0.141 0.138 0.075 0.005 

4 Variance 1.827 1.485 1.076 1.039 0.890 0.666 0.017 

 Proportion Variance 0.261 0.212 0.154 0.148 0.127 0.095 0.002 

5 Variance 2.153 1.340 1.027 0.977 0.950 0.537 0.017 

 Proportion Variance 0.308 0.191 0.147 0.140 0.136 0.077 0.002 

6 Variance 2.070 1.319 1.149 0.961 0.868 0.614 0.019 

 Proportion Variance 0.296 0.188 0.164 0.137 0.124 0.088 0.003 

Table D.3. Variance explained by axes resulting from principal component analysis of 

percentage landcover type over a 300m buffer used in the hunter distribution analysis for each 

proposed Ohio Deer Management Unit. 
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Appendix E. Hunter Success Models Principal Component Results 

DMU Principal 

Component 

Low 

Urban 

High 

Urban 

Forest Shrub Herbaceous Pasture Crops 

1 1 0.3001 0.2177 0.7295 0.2011 0.1673 0.5231 -0.9469  
2 -0.7877 -0.7774 0.3895 0.0661 -0.1512 0.1386 -0.0644  
3 0.0412 0.0613 -0.1179 -0.6313 -0.6664 0.4529 -0.0653 

2 1 0.4133 0.3885 -0.9368 -0.2016 -0.0503 0.4324 0.4866  
2 -0.7153 -0.6551 -0.1252 0.0275 -0.2656 0.4112 0.5081  
3 0.0573 -0.1026 0.0295 -0.2220 -0.0682 0.7471 -0.6728 

3 1 -0.8513 -0.7775 0.1306 0.0957 -0.2703 -0.1879 0.5423  
2 0.1674 0.2104 -0.9440 -0.0116 -0.0770 0.0594 0.7759  
3 0.1682 0.3435 0.2603 0.1362 -0.2037 -0.9438 0.2412 

4 1 0.2678 0.3701 -0.9667 -0.1876 -0.2140 0.3729 0.5916  
2 -0.8202 -0.7034 -0.0074 -0.0570 -0.1131 0.3293 0.5327  
3 0.0006 0.0076 -0.0896 0.4421 0.4037 -0.6536 0.5467 

5 1 0.5609 0.4307 -0.9394 -0.1618 -0.1824 0.6655 0.5434  
2 -0.6563 -0.7404 -0.2231 0.0049 -0.1791 0.3267 0.4199  
3 0.0225 -0.0494 0.1983 -0.6697 -0.5060 0.3226 -0.4055 

6 1 0.4991 0.3485 -0.9771 0.0264 0.1062 0.7611 0.4329  
2 -0.6860 -0.7523 -0.1725 0.1515 0.2032 0.3541 0.3256  
3 0.0554 0.1222 -0.0336 0.7137 0.7144 -0.0901 -0.2986 

Table E.1. Factor loadings resulting from principal component analysis of percentage landcover type 

over a 300m buffer used in the hunter success analysis for each proposed Ohio Deer Management Unit. 
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DMU Landcover 

Variable 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 

1 Low Urban 0.217 -0.659 0.040 -0.012 -0.061 0.687 0.200  
High Urban 0.158 -0.651 0.059 -0.209 0.171 -0.686 0.069  
Forest 0.528 0.326 -0.114 -0.139 0.502 0.027 0.574  
Shrub 0.146 0.055 -0.610 -0.605 -0.487 -0.009 -0.007  
Herbaceous 0.121 -0.127 -0.644 0.724 -0.071 -0.139 0.077  
Pasture 0.379 0.116 0.438 0.209 -0.682 -0.186 0.329  
Cultivated Crops -0.685 -0.054 -0.063 -0.045 -0.086 -0.048 0.715 

2 Low Urban 0.320 -0.593 0.055 0.108 0.130 0.627 -0.347  
High Urban 0.301 -0.543 -0.099 0.036 0.128 -0.757 -0.119  
Forest -0.726 -0.104 0.028 0.185 -0.028 -0.113 -0.644  
Shrub -0.156 0.023 -0.214 -0.642 0.715 0.049 -0.061  
Herbaceous -0.039 -0.220 -0.066 -0.704 -0.663 0.021 -0.100  
Pasture 0.335 0.341 0.719 -0.200 0.070 -0.134 -0.438  
Cultivated Crops 0.377 0.421 -0.648 0.073 -0.101 -0.003 -0.496 

3 Low Urban -0.642 0.133 0.152 -0.030 -0.135 -0.665 -0.293  
High Urban -0.586 0.168 0.311 0.020 -0.032 0.721 -0.101  
Forest 0.098 -0.752 0.235 -0.070 0.013 0.072 -0.599  
Shrub 0.072 -0.009 0.123 0.976 -0.154 -0.033 -0.050  
Herbaceous -0.204 -0.061 -0.184 0.183 0.940 -0.041 -0.035  
Pasture -0.142 0.047 -0.853 0.069 -0.216 0.173 -0.410  
Cultivated Crops 0.409 0.618 0.218 -0.057 0.161 0.018 -0.611 

4 Low Urban 0.205 -0.653 0.001 0.018 0.019 0.631 0.363  
High Urban 0.283 -0.560 0.007 0.032 0.021 -0.762 0.155  
Forest -0.739 -0.006 -0.086 0.180 0.023 -0.135 0.629  
Shrub -0.143 -0.045 0.423 -0.559 0.697 -0.016 0.019  
Herbaceous -0.163 -0.090 0.386 -0.549 -0.716 -0.025 0.038  
Pasture 0.285 0.262 -0.625 -0.546 0.005 -0.035 0.400  
Cultivated Crops 0.452 0.424 0.523 0.234 -0.025 -0.022 0.535 

5 Low Urban 0.380 -0.566 0.022 -0.005 -0.012 0.710 -0.172  
High Urban 0.292 -0.639 -0.049 -0.103 -0.136 -0.685 -0.077  
Forest -0.636 -0.192 0.197 -0.039 -0.132 0.007 -0.707  
Shrub -0.110 0.004 -0.665 -0.681 0.263 0.059 -0.099  
Herbaceous -0.124 -0.154 -0.502 0.697 0.456 -0.056 -0.110  
Pasture 0.451 0.282 0.320 -0.098 0.582 -0.138 -0.498  
Cultivated Crops 0.368 0.362 -0.402 0.171 -0.590 -0.011 -0.441 

6 Low Urban 0.344 -0.588 0.052 0.004 -0.021 -0.697 0.217  
High Urban 0.240 -0.645 0.115 0.124 0.111 0.693 0.078  
Forest -0.674 -0.148 -0.032 -0.003 0.041 0.014 0.722  
Shrub 0.018 0.130 0.670 0.450 -0.566 0.002 0.106  
Herbaceous 0.073 0.174 0.670 -0.227 0.672 -0.052 0.096  
Pasture 0.525 0.303 -0.085 -0.457 -0.272 0.176 0.558  
Cultivated Crops 0.298 0.279 -0.280 0.722 0.373 -0.021 0.305 

Table E.2. Eigen values resulting from principal component analysis of percentage landcover type over a 

300m buffer used in the hunter success analysis for each proposed Ohio Deer Management Unit. 
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DMU Metric PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 

1 Variance 1.908 1.427 1.071 0.931 0.909 0.588 0.166  
Proportion 

Variance 

0.273 0.204 0.153 0.133 0.130 0.084 0.024 

2 Variance 1.666 1.455 1.080 0.994 0.973 0.681 0.151  
Proportion 

Variance 

0.238 0.208 0.154 0.142 0.139 0.097 0.022 

3 Variance 1.758 1.575 1.223 0.997 0.956 0.445 0.047  
Proportion 

Variance 

0.251 0.225 0.175 0.142 0.137 0.064 0.007 

4 Variance 1.713 1.576 1.093 1.075 0.886 0.630 0.027  
Proportion 

Variance 

0.245 0.225 0.156 0.154 0.127 0.090 0.004 

5 Variance 2.180 1.344 1.015 0.987 0.952 0.502 0.021  
Proportion 

Variance 

0.311 0.192 0.145 0.141 0.136 0.072 0.003 

6 Variance 2.104 1.362 1.136 0.950 0.855 0.568 0.025  
Proportion 

Variance 

0.301 0.195 0.162 0.136 0.122 0.081 0.004 

Table E.3. Variance explained by axes resulting from principal component analysis of percentage 

landcover type over a 300m buffer used in the hunter success analysis for each proposed Ohio Deer 

Management Unit. 
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Appendix F. Hunter Distribution Candidate Models 

DMU Category Model K logLik AICc ΔAICc AICc

Wt 

1 Access PublicLand +MeanParcelSize 3 -3347.06 6700.13 0.0000 0.681 

  PublicLand 2 -3348.82 6701.64 1.512 0.319 

  Null 1 -3453.26 6908.52 208.391 0.0000 

 Difficulty Slope+I(Slope^2)+RoadDist+I(R

oadDist^2) 

5 -3292.14 6594.3 0.0000 0.67 

  Slope+I(Slope^2)+RoadDist+I(R

oadDist^2)+Slope:RoadDist 

6 -3291.85 6595.71 1.412 0.33 

  Slope+I(Slope^2) 3 -3371.26 6748.53 154.237 0.0000 

  RoadDist+I(RoadDist^2) 3 -3379.68 6765.37 171.076 0.0000 

  Null 1 -3453.26 6908.52 314.223 0.0000 

 Landscape PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3 

7 -2956.68 5927.37 0.0000 1 

  PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3+ForestEdge 

6 -2975.36 5962.73 35.356 0.0000 

  Null 1 -3453.26 6908.52 981.145 0.0000 

 Final PublicLand+Slope+I(Slope^2)+ 

RoadDist+I(RoadDist^2)+ 

PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3+ForestEdge 

+(PC1:RoadDist) 

1

3 

-2890.25 5806.57 0.0000 0.502 

  PublicLand+Slope+I(Slope^2)+ 

RoadDist+I(RoadDist^2)+ 

PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3+ForestEdge  

1

2 

-2891.26 5806.58 0.013 0.498 

  PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3+ForestEdge 

7 -2956.68 5927.37 120.807 0.0000 

  Slope+I(Slope^2)+RoadDist+ 

I(RoadDist^2) 

5 -3292.14 6594.3 787.73 0.0000 

  PublicLand 2 -3348.82 6701.64 895.075 0.0000 

  Null 1 -3453.26 6908.52 1101.95

3 

0.0000 

2 Access PublicLand +MeanParcelSize+ 

I(MeanParcelSize ^2) 

4 -2973.69 5955.4 0.0000 0.87 

  PublicLand 2 -2977.6 5959.19 3.798 0.13 

  Null 1 -3004.1 6010.2 54.805 0.0000 
            
           Continued 
a PC refers to principal components calculated from precent landcover variables within 300m buffer 
Table F.1. Candidate model set results for the hunter distribution analysis over all DMUs.   
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Table F.1 Continued 

DMU Category Model K logLik AICc ΔAICc AICc

Wt 

 Difficulty Slope+I(Slope^2)+RoadDist+ 

I(RoadDist^2)+(Slope:RoadDist) 

6 -2937.44 5886.9 0.0000 0.969 

  Slope+I(Slope^2)+RoadDist+I(R

oadDist^2) 

5 -2941.89 5893.8 6.897 0.031 

  RoadDist+I(RoadDist^2) 3 -2954.73 5915.47 28.568 0.0000 

  Slope+I(Slope^2) 3 -2991.6 5989.21 102.307 0.0000 

  Null 1 -3004.1 6010.2 123.297 0.0000 

 Landscape PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3 

6 -2785.49 5583.01 0.0000 0.6060 

  PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3+ForestEdge 

7 -2784.92 5583.87 0.8590 0.3940 

  Null 1 -3004.1 6010.2 427.195 0.0000 

 Final PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3+Slope+I(Slope^2)+RoadDi

st+I(RoadDist^2)+(Slope:RoadDi

st)+PublicLand 

+parcel300+I(parcel300^2) 

1

4 

-2765.16 5558.41 0.0000 0.7290 

  PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3+Slope+I(Slope^2)+RoadDi

st+I(RoadDist^2)+(Slope:RoadDi

st)+PublicLand 

+MeanParcelSize+I(MeanParcelS

ize^2)+PC2:RoadDist 

1

5 

-2765.14 5560.39 1.983 0.2710 

  PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3 

6 -2785.49 5583.01 24.597 0.0000 

  Slope+I(Slope^2)+RoadDist+I(R

oadDist^2)+(Slope:RoadDist) 

6 -2937.44 5886.9 328.495 0.0000 

  PublicLand 

+MeanParcelSize+I(MeanParcelS

ize^2) 

4 -2973.69 5955.4 396.987 0.0000 

  Null 1 -3004.1 6010.2 451.792 0.0000 

3 Access PublicLand 2 -1515.18 3034.36 0.0000 0.7090 

  PublicLand +MeanParcelSize 3 -1515.07 3036.15 1.782 0.2910 

  Null 1 -1523.54 3049.08 14.713 0.0000 

 Difficulty Slope+RoadDist+I(RoadDist^2)+ 

(Slope:RoadDist) 

5 -1500.86 3011.76 0.0000 0.7690 

  Slope+ RoadDist+I(RoadDist^2) 4 -1503.1 3014.21 2.454 0.2260 

  RoadDist+I(RoadDist^2) 3 -1507.91 3021.82 10.067 0.0050 

  Slope 2 -1517.42 3038.85 27.094 0.0000 

  Null 1 -1523.54 3049.08 37.322 0.0000 

           Continued 
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Table F.1 Continued 

DMU Category Model K logLik AICc ΔAICc AICc

Wt 

 Landscape PC1+I(PC1^2)+PC2+PC3+Forest

Edge 

6 -1428.95 2869.93 0.0000 0.9690 

  PC1+I(PC1^2)+PC2+PC3 5 -1433.39 2876.81 6.874 0.0310 

  Null 1 -1523.54 3049.08 179.145 0.0000 

 Final PC1+I(PC1^2)+PC2+PC3+Forest

Edge +PublicLand+Slope+ 

RoadDist+ I(RoadDist^2)+ 

(Slope:RoadDist) 

1

1 

-1422.85 2867.81 0.0000 0.4310 

  PC1+I(PC1^2)+PC2+PC3+Forest

Edge +PublicLand+Slope+ 

RoadDist+I(RoadDist^2)+(Slope:

RoadDist)+(PC2:RoadDist) 

1

2 

-1421.86 2867.87 0.052 0.4200 

  PC1+I(PC1^2)+PC2+PC3+Forest

Edge 

6 -1428.95 2869.93 2.117 0.1490 

  Slope+ RoadDist+ 

I(RoadDist^2)+(Slope:RoadDist) 

5 -1500.86 3011.76 143.941 0.0000 

  PublicLand 2 -1515.18 3034.36 166.549 0.0000 

  Null 1 -1523.54 3049.08 181.262 0.0000 

4 Access PublicLand 2 -864.73 1733.47 0.0000 0.7240 

  PublicLand +MeanParcelSize 3 -864.69 1735.4 1.93 0.2760 

  Null 1 -881.68 1765.37 31.902 0.0000 

 Difficulty Slope+RoadDist+I(RoadDist^2)+(

Slope:RoadDist) 

5 -829.23 1668.51 0.0000 0.6170 

  Slope+RoadDist+I(RoadDist^2) 4 -830.71 1669.46 0.951 0.3830 

  RoadDist+I(RoadDist^2) 3 -852.88 1711.77 43.264 0.0000 

  Slope 2 -860.95 1725.91 57.401 0.0000 

  Null 1 -881.68 1765.37 96.863 0.0000 

 Landscape PC1+PC2+I(PC2^2)+PC3 5 -759.36 1528.76 0.0000 0.7330 

  PC1+PC2+I(PC2^2)+PC3+Forest

Edge 

6 -759.36 1530.78 2.019 0.2670 

  Null 1 -881.68 1765.37 236.61 0.0000 

 Final PC1+PC2+I(PC2^2)+PC3+Slope

+RoadDist+I(RoadDist^2)+Public

Land+(RoadDist:PC2) 

1

0 

-746.84 1513.86 0.0000 0.6510 

  PC1+PC2+I(PC2^2)+PC3+Slope

+RoadDist+I(RoadDist^2)+ 

PublicLand 

9 -748.48 1515.1 1.247 0.3490 

  PC1+PC2+I(PC2^2)+PC3 5 -759.36 1528.76 14.904 0.0000 

  Slope+RoadDist+I(RoadDist^2) 4 -830.71 1669.46 155.601 0.0000 

  PublicLand 2 -864.73 1733.47 219.612 0.0000 

  Null 1 -881.68 1765.37 251.514 0.0000 

           Continued 
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Table F.1 Continued 

DMU Category Model K logLik AICc ΔAICc AICc

Wt 

5 Access PublicLand 2 -997.96 1999.93 0.0000 0.7310 

  PublicLand +MeanParcelSize 3 -997.96 2001.93 2.002 0.2690 

  Null 1 -1006.45 2014.9 14.969 0.0000 

 Difficulty Slope+I(Slope^2)+RoadDist+I(R

oadDist^2)+(Slope:RoadDist) 

6 -993.74 1999.54 0.0000 0.6760 

  Slope+I(Slope^2)+RoadDist+I(R

oadDist^2) 

5 -995.6 2001.24 1.702 0.2890 

  RoadDist+I(RoadDist^2) 3 -999.92 2005.85 6.31 0.0290 

  Slope+I(Slope^2) 3 -1001.49 2009 9.465 0.0060 

  Null 1 -1006.45 2014.9 15.364 0.0000 

 Landscape PC1+PC2+PC3+ForestEdge 5 -990.9 1991.84 0.0000 0.9690 

  PC1+PC2+PC3 4 -995.36 1998.75 6.912 0.0310 

  Null 1 -1006.45 2014.9 23.063 0.0000 

 Final PC1+PC2+PC3+ForestEdge 

+Slope+I(Slope^2)+RoadDist+I(

RoadDist^2)+PublicLand 

1

0 

-973.39 1966.93 0.0000 0.7190 

  PC1+PC2+PC3+ForestEdge 

+Slope+I(Slope^2)+RoadDist+I(

RoadDist^2)+PublicLand+(Road

Dist:PC1) 

1

1 

-973.31 1968.81 1.879 0.2810 

  PC1+PC2+PC3+ForestEdge 5 -990.9 1991.84 24.906 0.0000 

  PublicLand 2 -997.96 1999.93 33 0.0000 

  Slope+I(Slope^2)+RoadDist+I(R

oadDist^2)  

5 -995.60 2001.24 34.308 0.0000 

  Null 1 -1006.45 2014.9 47.969 0.0000 

6 Access PublicLand 

+MeanParcelSize+I(MeanParcelS

ize^2) 

4 -5274.51 10557.02 0.0000 0.5670 

  PublicLand 2 -5276.78 10557.56 0.5370 0.4330 

  Null 1 -5341.39 10684.78 127.763 0.0000 

 Difficulty Slope+I(Slope^2)+RoadDist 4 -5328.28 10664.57 0.0000 0.4200 

  Slope+I(Slope^2)+RoadDist+(Slo

pe:RoadDist) 

5 -5327.59 10665.2 0.6260 0.3070 

  Slope+I(Slope^2) 3 -5329.72 10665.44 0.8690 0.2720 

  Null 1 -5341.39 10684.78 20.216 0.0000 

  RoadDist 2 -5340.62 10685.24 20.669 0.0000 

 

           Continued  
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Table F.1 Continued 

DMU Category Model K logLik AICc ΔAICc AICc

Wt 

 Landscape PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3 

6 -5283.58 10579.18 0.0000 0.6950 

  PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3+ForestEdge 

7 -5283.41 10580.83 1.6520 0.3050 

  Null 1 -5341.39 10684.78 105.61 0.0000 

 Final  PublicLand+ 

PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3+Slope+I(Slope^2) 

9 -5227.91 10473.85 0.0000 1.0000 

  PublicLand 2 -5276.78 10557.56 83.705 0.0000 

  PC1+I(PC1^2)+PC2+I(PC2^2) 

+PC3 

6 -5283.58 10579.18 105.322 0.0000 

  Slope+I(Slope^2) 3 -5329.72 10665.44 191.585 0.0000 

  Null 1 -5341.39 10684.78 210.931 0.0000 
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Appendix G. Hunter Success Candidate Models 

DMU Category Model K logLik AICc ΔAICc AICcWt 

1 Access PublicLand 2 -1684.43 3372.86 0.0000 0.716 

  PublicLand +(MeanParcelSize) 3 -1684.35 3374.71 1.853 0.284 

  Null 1 -1697.07 3396.14 23.282 0.000 

 Difficulty RoadDist 2 -1694.41 3392.82 0.0000 0.608 

  RoadDist+Slope 3 -1694.37 3394.74 1.919 0.233 

  Null 1 -1697.07 3396.14 3.318 0.116 

  Slope 2 -1697.06 3398.12 5.303 0.043 

 Landscape PC1+PC2+I(PC2^2)+PC3 5 -1688.33 3386.68 0.000 0.491 

  PC1+PC2+I(PC2^2)+PC3+ 

ForestEdge+CropEdge 

7 -1686.74 3387.52 0.839 0.323 

  PC1+PC2+I(PC2^2)+PC3+ForestEdge 6 -1688.33 3388.68 2.004 0.18 

  Null 1 -1697.07 3396.14 9.459 0.004 

  HSI 2 -1697 3398.00 11.319 0.002 

 Final PC1+PC2+I(PC2^2)+PC3+PublicLand 

+RoadDist 

7 -1670.2 3354.44 0.0000 0.724 

  PC1+PC2+I(PC2^2)+PC3+PublicLand 

+RoadDist+PC1:PublicLand 

8 -1670.15 3356.37 1.927 0.276 

  PublicLand 2 -1684.43 3372.86 18.419 0.000 

  PC1+PC2+I(PC2^2)+PC3 5 -1688.33 3386.68 32.242 0.000 

  RoadDist 2 -1694.41 3392.82 38.383 0.000 

  Null 1 -1697.07 3396.14 41.701 0.000 

2 Access PublicLand+MeanParcelSize 3 -1474.89 2955.79 0.000 0.549 

  PublicLand 2 -1476.09 2956.18 0.393 0.451 

  Null 1 -1492.15 2986.3 30.512 0.000 

 Difficulty RoadDist+Slope+I(Slope^2) 4 -1480.33 2968.67 0.000 0.48 

  Slope+I(Slope^2) 3 -1481.35 2968.71 0.037 0.471 

  Slope 2 -1484.64 2973.28 4.609 0.048 

  RoadDist 2 -1490.49 2984.99 16.316 0.000 

  Null 1 -1492.15 2986.3 17.628 0.000 

 Landscape PC1+PC2+I(PC2^2)+PC3 5 -1486.98 2983.99 0.000 0.397 

  HSI 2 -1490.58 2985.17 1.178 0.22 

  PC1+PC2+I(PC2^2)+PC3+ForestEdge 6 -1486.86 2985.77 1.779 0.163 

  Null 1 -1492.15 2986.3 2.311 0.125 

  PC1+PC2+I(PC2^2)+PC3+ForestEdge 

+CropEdge 

7 -1486.39 2986.83 2.842 0.096 

           Continued 

Table G.1. Candidate model set results for the hunter success analysis over all DMUs.   
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 Table G.1 Continued 

DMU Category Model K logLik AICc ΔAICc AICcWt 

3 Access PublicLand+MeanParcelSize 3 -749.55 1505.11 0.000 0.79 

  PublicLand 2 -751.89 1507.79 2.681 0.207 

  Null 1 -756.93 1515.87 10.76 0.004 

 Difficulty Null 1 -756.93 1515.87 0.000 0.516 

  Slope 2 -756.83 1517.67 1.794 0.211 

  RoadDist 2 -756.91 1517.83 1.954 0.194 

  Slope+RoadDist 3 -756.8 1519.63 3.755 0.079 

 Landscape HSI 2 -754.91 1513.84 0.000 0.425 

  PC1+PC2+PC3+ForestEdge+CropEdge 6 -751.1 1514.29 0.448 0.34 

  Null 1 -756.93 1515.87 2.036 0.154 

  PC1+PC2+PC3 4 -755.15 1518.34 4.501 0.045 

  PC1+PC2+PC3+ForestEdge 5 -754.36 1518.78 4.94 0.036 

 Final HSI+PublicLand+MeanParcelSize 4 -747.03 1502.09 0.000 0.629 

  HSI+PublicLand+MeanParcelSize+ 

HSI:MeanParcelSize 

5 -747.03 1504.11 2.013 0.23 

  PublicLand 3 -749.55 1505.11 3.02 0.139 

  HSI 2 -754.91 1513.84 11.744 0.002 

  Null 1 -756.93 1515.87 13.78 0.001 

4 Access PublicLand 2 -432.94 869.9 0.000 0.514 

  PublicLand+MeanParcelSize 3 -431.99 870.03 0.127 0.483 

  Null 1 -439.03 880.06 10.166 0.003 

 Difficulty Slope+RoadDist 3 -430.42 866.88 0.000 0.727 

  Slope 2 -432.44 868.9 2.025 0.264 

  RoadDist 2 -435.98 875.98 9.109 0.008 

  Null 1 -439.03 880.06 13.188 0.001 

 Landscape PC1+PC2+PC3+ForestEdge+CropEdge 6 -418.76 849.65 0.000 0.999 

  PC1+PC2+PC3 4 -427.69 863.45 13.804 0.001 

  PC1+PC2+PC3+ForestEdge 5 -427.66 865.41 15.766 0.000 

  HSI 2 -435.65 875.31 25.663 0.000 

  Null 1 -439.03 880.06 30.415 0.000 

 Final PC1+PC2+PC3+ForestEdge+CropEdge+ 

PublicLand+ Slope+RoadDist 

9 -409.62 837.52 0.000 0.699 

  PC1+PC2+PC3+ForestEdge+CropEdge+ 

PublicLand+ Slope+RoadDist 

+PC1:PublicLand 

10 -409.43 839.22 1.695 0.3 

  PC1+PC2+PC3+ForestEdge+CropEdge 6 -418.76 849.65 12.126 0.002 

  Slope+RoadDist 3 -430.42 866.88 29.353 0.000 

  PublicLand 2 -432.94 869.9 32.376 0.000 

  Null 1 -439.03 880.06 42.542   0.000 

           Continued 
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Table G.1 Continued 

DMU Category Model K logLik AICc ΔAICc AICcWt 

5 Access PublicLand+MeanParcelSize 3 -484.06 974.15 0.000 0.891 

  PublicLand 2 -487.17 978.35 4.209 0.109 

  Null 1 -499.03 1000.06 25.914 0.000 

 Difficulty Slope 2 -497.86 999.74 0.000 0.363 

  Null 1 -499.03 1000.06 0.322 0.309 

  RoadDist 2 -498.65 1001.31 1.573 0.165 

  Slope+RoadDist 3 -497.66 1001.35 1.613 0.162 

 Landscape Null 1 -499.03 1000.06 0.000 0.52 

  HSI 2 -499.02 1002.05 1.993 0.192 

  PC1+PC2+PC3+ForestEdge+CropEdge 6 -495.04 1002.2 2.14 0.178 

  PC1+PC2+PC3+ForestEdge 5 -496.93 1003.94 3.876 0.075 

  PC1+PC2+PC3 4 -498.72 1005.5 5.436 0.034 

 Final PublicLand+MeanParcelSize 3 -484.06 974.15 0.000 1 

  Null 1 -499.03 1000.06 25.914 0.000 

6 Access PublicLand+MeanParcelSize+ 

I(MeanParcelSize^2) 

4 -2600.84 5209.69 0.000 1 

  PublicLand 2 -2610.9 5225.8 16.114 0.000 

  Null 1 -2644.71 5291.42 81.731 0.000 

 Difficulty Null 1 -2644.71 5291.42 0.000 0.44 

  Slope 2 -2644.22 5292.45 1.03 0.263 

  RoadDist 2 -2644.59 5293.18 1.759 0.182 

  Slope+RoadDist 3 -2644.05 5294.1 2.681 0.115 

 Landscape PC1+PC2+I(PC2^2)+PC3+ForestEdge 6 -2631.61 5275.24 0.000 0.628 

  PC1+PC2+I(PC2^2)+PC3 

+ForestEdge+CropEdge 

7 -2631.61 5277.24 2.004 0.231 

  PC1+PC2+I(PC2^2)+PC3 5 -2634.1 5278.22 2.988 0.141 

  Null 1 -2644.71 5291.42 16.183 0.000 

  HSI 2 -2644.5 5293 17.765 0.000 

 Final PC1+PC2+I(PC2^2)+PC3+ForestEdge+ 

PublicLand+MeanParcelSize+ 

I(MeanParcelSize^2) 

9 -2593.65 5205.34 0.000 0.64 

  PC1+PC2+I(PC2^2)+PC3+ForestEdge+ 

PublicLand+MeanParcelSize+ 

I(MeanParcelSize^2)+PC1:PublicLand 

10 -2593.44 5206.94 1.602 0.287 

  PublicLand+MeanParcelSize+ 

I(MeanParcelSize^2) 

4 -2600.84 5209.69 4.351 0.073 

  PC1+PC2+I(PC2^2)+PC3+ForestEdge 6 -2631.61 5275.24 69.899 0.000 

  Null 1 -2644.71 5291.42 86.081 0.000 

 


