Course Instructor and Coordinator:

Dr. Brian K. Slater
Associate Professor, Soil Science
414D Kottman Hall
Telephone: 292-5891
Cell: 581-9102
slater.39@osu.edu

Office Hours: T 10:00 AM - 2:00 PM or by email appointment

Teaching Associates:

Emma Snyder: snyder.1079@buckeyemail.osu.edu
Ryan Hottle: ry.hottle@gmail.com
Paul Soltesz: soltesz.7@buckeyemail.osu.edu
Jared Shaffer: shaffer.396@buckeyemail.osu.edu

Times and Location:

5 sections
M 10:00 AM – 1:00 PM
M 4:00 PM – 7:00 PM
W 9:30 AM – 12:30 AM
T 6:00 PM – 9:00 PM
F 9:00 AM – 1:00PM

Room 403, Kottman Hall

GE Credit:

ENR 3001 Soil Science Laboratory is available for GE credit when taken together with ENR 3000, Soil Science. Both courses must be completed for GE credit.

Student Learning Goals and Objectives:

GE Category - 2. Breadth: A. Natural Science
Physical Science
Goals:

Students gain understanding of the principles, theories, and methods of modern soil science, the relationship between soil science and technology, the implications of scientific discoveries regarding the soil resource and the potential of science and technology to address problems of the contemporary world.

Expected Learning Outcomes:

1. Students understand the basic facts, principles, theories and methods of modern soil science.
2. Students learn key events in the history of soil science.
3. Students provide examples of the inter-dependence of scientific and technological developments.
4. Students discuss social and philosophical implications of scientific discoveries related to the soil resource and understand the potential of science and technology to address problems of the contemporary world, particularly environmental issues, food security, and human health.

Specific Learning Outcomes:

1. Students will be introduced to standard methods for measuring important soil characteristics, including morphological, physical, engineering, chemical and biological properties.
2. Students experience standard laboratory techniques and good laboratory practice.
3. Students will gain an understanding of the collection, analysis and interpretation of soil data.
4. Students will compare and contrast properties of soils from different locations.
5. Students will understand how to solve simple problems related to soil management, based on soil property data collected and measured in a laboratory setting.
6. Students will be introduced to the US Soil Taxonomy and the Web Soil Survey and practice classifying soils at a broad level.
7. Students learn about important soil processes and their influence on soil behavior by measuring changes in properties over time.
8. Students understand the use of online soil survey information, and apply available information by developing a land use plan based on soil limitations and opportunities.

Learning goals and objectives will be satisfied through the sequence of presentations, laboratory exercises, quizzes, individual feedback, assigned readings and the land use planning project.

Course Description:

This introductory course in soil science laboratory practice complements ENR 3000 Soil Science lecture class. Each practical period will include up to 1 hour of lecture in which important principles and procedures of soil data collection, analysis and interpretation
will be discussed. This introduction will be followed by practical exercises to illustrate the soil properties and processes discussed in the lab presentation. Subject matter will be presented in a variety of formats, including demonstrations, videos, lab measurements, problem solving, and reference materials.

Course Materials:

Soil Science Laboratory Manual. Available at beginning of lab class during second week or semester or from Zip Publishing, 1313 Chesapeake Ave after January 14.
Soils: An Introduction by Singer and Munns (reference only)
Or Elements of the Nature and Properties of Soils by Brady and Weil (reference only)

Prerequisites:

1. Soil Science 3000.01 or concurrent enrollment
2. Understanding soils requires a working knowledge of the principles and vocabulary of the sciences, including elementary chemistry. Students taking this course without having received credit for Chemistry 101 or 121 (or an equivalent course) should be aware that understanding of relevant material from these courses is assumed, and time to review basic concepts of chemistry will be limited.

Course Content:

Introductory presentations and demonstrations will parallel ENR 3000 lecture materials at somewhat greater depth, and elaborate on standard and alternative laboratory methods for data collection, analysis and interpretation of soil morphological, physical, chemical, and biological properties. The hands-on exercises are based on standard lab methods and data collected will be interpreted to inform a series of questions to be provided as a lab report. All background material and lab report forms are provided in the Soil Science Laboratory Manual. Introductory presentations will also be provided on Carmen.

Assessment Format:

A short quiz (5-7 questions, multiple choice) will be given at the beginning of each lab period (except labs 1, 2), to encourage reading of the laboratory materials prior to the lab. Lab 1 is a film review and Lab report 2 is a review exercise covering background math, chemistry and dimensional analysis that will be helpful during the course. Lab reports consist of tables of data and descriptions collected during the lab practicum, and a series of questions related to data collected in the lab, data interpretation, and synthesis of the information presented. Lab reports generally are due at the subsequent lab; most of the report will be done during the lab period, with a week available for any outstanding questions and interpretations to be completed. Lab 3 is a more extensive exercise in which students prepare a land use plan for an area of Ohio, based on online soil information. Students choose either an integrated urban development or an agricultural enterprise and base infrastructure development and a spatial plan on the Web Soil Survey information for the chosen area, as well as other online sources. The report consists of a
land use plan map and a written justification for the decisions made. The report is expected to be at least 2 pages single space (12 point type face), together with associated maps and interpretation tables. Three weeks are allowed for the lab 3 exercise.

The final exam will be comprehensive, and is an open book exam. The final consists of a variety of multiple choice questions, short answer questions and problems related to soil data provided. Typically, he final has about 50 questions to be completed in 2 hours.

Grading:

Each quiz is worth 10 points; the lowest two quiz scores will be dropped. Lab reports 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, and 12 will each be worth 100 points. The two lowest scores of these 100 point lab reports will be dropped. Lab report 1 is a review exercise worth 100 points. Lab 4, the land use plan report, is worth 200 points. The final exam will be worth 320 points. The final exam will be comprehensive, and is an open book exam.

<table>
<thead>
<tr>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly quizzes (12, lowest 2 dropped)</td>
</tr>
<tr>
<td>Lab reports (lowest score dropped)</td>
</tr>
<tr>
<td>Lab report 4 (land use plan)</td>
</tr>
<tr>
<td>Final exam</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

A curve will be used to assign letter grades. (In recent years, the curve has generally been bimodal, with median grades in the Cs and Bs)

Attendance:

Please attend assigned lab section unless prior arrangements are made. No make-up labs will be offered. Lab reports will not be accepted without attendance verified by completion of the weekly quiz.
<table>
<thead>
<tr>
<th>Week</th>
<th>Lab</th>
<th>Topic(s)</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Introduction to Course; Film</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Dimensional analysis and chemical concepts: Review Problem Set</td>
<td>Lab Rept 1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Soil Forming Processes, Soil Profiles, Soil Structure: Type, Grade, Size, Soil Color (Munsell System) and Drainage</td>
<td>Lab Rept 2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Soil Parent Materials, Soil Geography, Legal Description of Land, Soil Survey Interpretations, Land Use Planning, Accessing soil data</td>
<td>Lab Rept 3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Soil Classification</td>
<td>none</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Soil Consistence: Atterberg Limits, Linear Extensibility, Plasticity, Soil Failure</td>
<td>Lab Rept 5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>No lab scheduled – time available for work on Lab 4 project</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>Particle Size Analysis, Soil Texture, Clay Dispersion and Flocculation, Particle Density</td>
<td>Lab Rept 6</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>Cation Exchange Capacity, Potassium in Soils, Exchangeable Cations</td>
<td>Lab Rept 8</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>Soil pH, Active Soil Acidity, Exchangeable (Reserve) Acidity, Soil Buffer Capacity, Liming Acid Soils, Soil Phosphorus</td>
<td>Lab Rept 10</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>Soil erosion: Soil Cover, Residues and Tillage, Universal Soil Loss Equation</td>
<td>Lab Rept 11</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>Final Exam</td>
<td>Lab Rept 12</td>
</tr>
</tbody>
</table>
Academic Misconduct:

It is the responsibility of the Committee on Academic Misconduct to investigate or establish procedures for the investigation of all reported cases of student academic misconduct. The term “academic misconduct” includes all forms of student academic misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the committee (Faculty Rule 3335-5-487). For additional information, see the Code of Student Conduct (http://studentaffairs.osu.edu/info_for_students/csc.asp).

Disability Services

Students with disabilities that have been certified by the Office for Disability Services will be appropriately accommodated, and should inform the instructor as soon as possible of their needs. The Office for Disability Services is located in 150 Pomerene Hall, 1760 Neil Avenue; telephone 292-3307, TDD 292-0901; http://www.ods.ohio-state.edu/.