

USGS Grass Carp Research in the Sandusky River and Western Lake Erie

~28 kg mature, diploid female grass Carp Lake Erie north of Cedar Point, 6-2014

4.5 kg eggs (GSI ~16%)

Grass Carp spawning potential in GL tributaries

What we know:

- Six age-1+ diploid GC (451-514 mm TL) captured in Sandusky River in 2012
- Otolith microchemistry consistent with Sandusky River origin

Grass Carp spawning potential in GL tributaries

What we know:

- USGS modeling work confirmed reach below Ballville Dam of suitable length for incubation
- Suitable flood event occurred in 2011

EXPLANATION

- Range of potential spawning discharge with observed hydraulics capable of egg transport (lower boundary uncertain) (Murphy and Jackson, 2013)
- Discharge, in 2011
- Discharge, in 2012
- ---- Maturation date (≈ June 23) from Kocovsky et al. (2012)
- ---- Estimated date when water temperature is no longer conducive to spawning and egg development (based on 2012 data in the Sandusky River, Murphy and Jackson, 2013)
- ---- Observed discharge at which Asian carp eggs can be successfully transported (Murphy and Jackson, 2013)

Grass Carp spawning potential in GL tributaries

What we want to know:

Can we find direct evidence of spawning?

If so:

Can we determine where they spawned?

Can we determine where they are reared?

And ultimately...

- Can we predict/prevent/disrupt spawning?
- Can management options be developed to greatly reduce or eradicate Grass Carp?

USGS

Assessing Spawning in Lake Erie Tributaries

Sampling for direct evidence of spawning

- Bongo nets weekly and during high-flow events
- Light traps in main channel and backwaters in 3
 habitat types (open water, macrophytes, wood debris)
 matches protocol used on MO River

Assessing spawning in GL tributaries

2015 promoted to 2-year project and expanded

Sandusky River

Sandusky River

River Raisin

In collaboration with MIDNR

~33 river km from mouth at Monroe to Cabela's at Dundee

Bongo sampling only a few km upstream due to poor access

Light traps near "hot ponds"

2014 Pilot Year Sampling

- Proof of concept: Sandusky safe to sample during high-flow events
- 10 dates Bongo, 4 dates light traps
- No GC sampled
- Only 1 suitable event within likely spawning period

2015 Sampling

Much higher water levels and more high-flow events than 2014 captured late June and Early July events with Bongo nets continue to sample with larval traps

Outcomes for Sandusky River Work

- Catch them in the act?
 - pinpoint location of spawning and strong confirmatory evidence of suitability of conditions
- Establish spawning chronology for Sandusky River: Who and when
 - will inform potential for collateral damage if GC control measures deployed
- Establish sampling protocols for assessing spawning
- Create probabilistic models to assess risk of spawning
 - hydrologic and meterologic variables in conjunction with USGS FluEgg model
 - primary focus of graduate students thesis work

Models to Assess Spawning Risk

- USGS flow data
 - Minimum required flow
- Sandusky River water temperatures
 - Determines incubation time
 - Thermal depression with increasing flow
- Air temperatures
 - To predict water temperatures
- Rainfall
 - What amount of rain over what period required to produce sufficient flow

- Bayesian model to assess what amount of rainfall and what temperature is required to produce a high-flow event suitable for Asian carp spawning
- Good for the goose, good for the gander: Silver Carp and Bighead carp have similar spawning needs

Potential research 2016-2020+

- IPM: Identify eradication or control methods
- Grass Carp biology and population status
 - Growth, origins, diets, fecundity, age structure, genetics, abundance estimate
 - Will require killing fish for otoliths, gonads, diets
- Tagging and tracking

2015 Pilot vegetation work

 Assessing macrophyte communities and locations in lower Sandusky River

Objectives: Identify existing data sets and gaps

Inventory aquatic vegetation

- embayments, shorelines, connected wetlands

- metrics: species richness, distributions, relative

abundances

Faunal species associations/diet preferences

Grass Carp, Tubenose Goby, Rusty Crayfish, Red

Swamp Crayfish

Ongoing/terminating USGS Research

- Waterguns: final year6-gun array with bigger guns
- CO₂ barriers first year testing
- Complex sound simulated motor noise

