Genomic approaches to evaluate population structure of Mississippi River Basin Silver Carp

Michael Sovic, PhD Freedom Genomics LLC Email: freegenllc@gmail.com Guoqing Lu, PhD University of Nebraska at Omaha Email: glu3@mail.unomaha.edu

Outline

- Project Overview
- Population genetics/genomics for identifying population structure
 - ► How does it work?
 - ► Influencing Factors (pop size, time, gene flow, hybridization)
- ▶ 3 Project Phases
 - ► ID of genetic markers
 - Preliminary test of population structure
 - ► Full analysis

Outline

- Project Overview
- Population genetics/genomics for identifying population structure
 - ► How does it work?
 - ► Influencing Factors (pop size, time, gene flow, hybridization)
- ▶ 3 Project Phases
 - ► ID of genetic markers
 - Preliminary test of population structure
 - ► Full analysis

Mississippi River Basin Panel on Aquatic Nuisance Species (MRBP)

Question: Can population structure (inferred through genetics) give insight into spawning locations for targeted management?

Outline

- Project Overview
- Population genetics/genomics for identifying population structure
 - ▶ How does it work?
 - ▶ Influencing Factors (pop size, time, gene flow, hybridization)
- ▶ 3 Project Phases
 - ► ID of genetic markers
 - Preliminary test of population structure
 - ► Full analysis

Single pond (population) with 10 fish - looking at one genetic marker (20 alleles)

Alleles actually occur within diploid individuals

Alleles actually occur within diploid individuals

ATACGACCAGGGTATTTAC

ATACGACCAGGGTATTTAC.

...<mark>A</mark>GGACCCCATTTACAAACCAT

.AGGACCCCATTTACAAACCAŢ

~800 million bases (Silver Carp)

Generation 1

Single pond with 10 fish (20 alleles)

Stochastic/Random Process!!

Genetic Drift

Hypothetical Outcome #1

Genetic Drift

Hypothetical Outcome #2

Process happens independently every generation at millions of markers in the genome.

Possible Scenarios

T: 0.5 A: 0.5

T: 0.5 A: 0.5 T: 0.52 A: 0.48

T: 0.49 A: 0.51

T: 1 A: 0

T: 0 A: 1

Can't detect structure

Hard to detect structure

Easy to detect structure

Factors That Affect Differentiation

<50 generations? Time ~ Differentiation

Fairly high? Migration ~ Differentiation

????

■ Pop Size ~ Differentiation

Best-Case Scenario

Likely Scenario

T: 1 A: 0

T: 0.52 A: 0.48

T: 0.49 A: 0.51

Easy to detect structure

GENETICS VS GENOMICS Hard to detect structure

Likely Scenario

Genomic methods allow us to generate data from large numbers of genetic markers (1000's, potentially up to millions in some cases).

Genomic Method: RadSeq

- Allows us to consistently sample the same genomic positions from multiple individuals (without sequencing the entire genome)
- Customizable with respect to the number of genetic markers analyzed
- Tradeoff between number needed for inference and sequencing cost.

Outline

- Project Overview
- Population genetics/genomics for identifying population structure
 - ► How does it work?
 - ► Influencing Factors (pop size, time, gene flow, hybridization)
- ▶ 3 Project Phases
 - ▶ ID of genetic markers
 - Preliminary test of population structure
 - ► Full analysis

Project Plan

Phases	Completion Date
1. Develop database of informative genomic markers/protocol to generate data. (N ~10)	In Process
2. Assess population structure of silver carp at 3 geographically distant locations. (N ~100)	September 30, 2022
3. If population structure is identified in Phase 2, perform comprehensive analysis of silver carp population genetic structure throughout the Mississippi River Basin by including all populations of interest. (N >300)	June 30, 2023

MOO n = 180IMAR n = 545 IPEO n = 76 PL20 n = 136 ILAG n = 638 IALT n = 39 PL26 n = 365 MKY n = 408 MMS n = 411

Lamer et al. 2010. North American Journal of Fisheries Management 30:1452-1461.

Phases 1,2 Sampling

- ILAG Illinois River LaGrange Reach 20
- MAR Illinois River Marseilles 20
- MKY Mississippi River (near Laketon, KY)
- PL20 Pool 20 of Mississippi River (near Keokuk, IA) 17
- PL26 Pool 26 of Mississippi River (near Alton, IL) 20
- MOO Missouri River (near Omaha, NE)
 20

Phase 3 and Beyond

WISH LIST of Collection locations:

- Invasion Fronts
 - Middle Ohio Markland Pool
 - Tennessee River above Pickwick
 - Cheetam Reservoir on Cumberland River
 - MS River Pool 8 Duane has samples and collecting more
 - MO River below Gavins Point dam
 - IL River Dresden Island pool
 - White River north end, lowhead dam
 - AR River Little Rock area
 - Red River below Texoma
 - Tenn-Tom waterway enough fish?

- Established Areas
 - 1-3 more sites Ohio River
 - Kentucky Lake
 - Barkley Lake
 - MS River above Lock and Dam 19, below pool 8 (all pools combined)
 - MS River between pools 26 and 19
 - MS River St. Louis area
 - MO River below mouth of Platte
 - MO River below KS River
 - Little Sioux River
 - MO River, Jefferson City Osage stretch
 - IL River Peoria Pool
 - IL River near mouth of IL River
 - Atchafalaya River
 - Lower MS River 2 more sites

More Information

Chris Steffen

Aquatic Nuisance Species Coordinator

Kansas Department of Wildlife and Parks

o: (620) 342-0658 | ksoutdoors.com

c: (785) 230-2033 | ProtectKSWaters.org

Email: Chris.Steffen@KS.GOV

Guoqing Lu, PhD University of Nebraska at Omaha Email: glu3@mail.unomaha.edu

Michael Sovic, PhD Freedom Genomics LLC Email: freegenllc@gmail.com

Stephen F. Spear, PhD
U.S. Geological Survey
Upper Midwest Environmental Sciences Center
Email: sfspear@usgs.gov